A particle-filter framework for robust cryo-EM 3D reconstruction

被引:0
作者
Mingxu Hu
Hongkun Yu
Kai Gu
Zhao Wang
Huabin Ruan
Kunpeng Wang
Siyuan Ren
Bing Li
Lin Gan
Shizhen Xu
Guangwen Yang
Yuan Shen
Xueming Li
机构
[1] Tsinghua University,MOE Key Laboratory of Protein Science, School of Life Sciences
[2] Tsinghua University,Advanced Innovation Center for Structural Biology
[3] National Supercomputing Center in Wuxi,Department of Computer Science and Technology
[4] Tsinghua University,Department of Electronic Engineering
[5] Tsinghua University,undefined
[6] Tsinghua-Peking Joint Center for Life Sciences,undefined
来源
Nature Methods | 2018年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-particle electron cryomicroscopy (cryo-EM) involves estimating a set of parameters for each particle image and reconstructing a 3D density map; robust algorithms with accurate parameter estimation are essential for high resolution and automation. We introduce a particle-filter algorithm for cryo-EM, which provides high-dimensional parameter estimation through a posterior probability density function (PDF) of the parameters given in the model and the experimental image. The framework uses a set of random support points to represent such a PDF and assigns weighting coefficients not only among the parameters of each particle but also among different particles. We implemented the algorithm in a new program named THUNDER, which features self-adaptive parameter adjustment, tolerance to bad particles, and per-particle defocus refinement. We tested the algorithm by using cryo-EM datasets for the cyclic-nucleotide-gated (CNG) channel, the proteasome, β-galactosidase, and an influenza hemagglutinin (HA) trimer, and observed substantial improvement in resolution.
引用
收藏
页码:1083 / 1089
页数:6
相关论文
共 50 条
[31]   Joint Angular Refinement and Reconstruction for Single-Particle Cryo-EM [J].
Zehni, Mona ;
Donati, Laurene ;
Soubies, Emmanuel ;
Zhao, Zhizhen ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :6151-6163
[32]   3.9Å phase plate cryo-EM reconstruction of the nucleosome core particle [J].
Sandin, Sara Helena Ruth Engholmen ;
Vogirala, Vinod K. ;
Inian, Oviya ;
Wong, Andrew S. W. ;
Nordenskiold, Lars ;
Plitzko, Juergen M. ;
Danev, Radostin ;
Chua, Eugene Yue Dao .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 :C1293-C1293
[33]   Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction (vol 21, 534, 2020) [J].
Al-Azzawi, Adil ;
Ouadou, Anes ;
Duan, Ye ;
Cheng, Jianlin .
BMC BIOINFORMATICS, 2022, 23 (01)
[34]   A Method for Generation of Synthetic 2D and 3D Cryo-EM Images [J].
N. A. Anoshina ;
T. B. Sagindykov ;
D. V. Sorokin .
Programming and Computer Software, 2018, 44 :240-247
[35]   Breaking the 3Å resolution barrier in single particle cryo-EM [J].
Fischer, N. ;
Neumann, P. ;
Bock, L. ;
Ficner, R. ;
Rodnina, M. ;
Stark, H. .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 :S46-S46
[36]   A Method for Generation of Synthetic 2D and 3D Cryo-EM Images [J].
Anoshina, N. A. ;
Sagindykov, T. B. ;
Sorokin, D., V .
PROGRAMMING AND COMPUTER SOFTWARE, 2018, 44 (04) :240-247
[37]   3D structure of the CD26-ADA complex obtained by cryo-EM and single particle analysis [J].
Ludwig, K ;
Fan, H ;
Dobers, J ;
Berger, M ;
Reutter, W ;
Böttcher, C .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 313 (02) :223-229
[38]   3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM [J].
Punjani, Ali ;
Fleet, David J. .
JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (02)
[39]   Tidy up cryo-EM sample grids with 3D printed tools [J].
Hamaguchi, Tasuku ;
Yonekura, Koji .
JOURNAL OF STRUCTURAL BIOLOGY, 2020, 209 (01)
[40]   A kinetic model for solving a combination optimization problem in ab-initio Cryo-EM 3D reconstruction [J].
Liu, Jiaxuan ;
Lu, Yonggang ;
Zhu, Li .
BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)