Effect of microstructures on deformation behaviour of high-strength low-alloy steel

被引:0
|
作者
S. K. Das
S. Chatterjee
S. Tarafder
机构
[1] National Metallurgical Laboratory (Council of Scientific and Industrial Research),MST Division
[2] Bengal Engineering and Science University,Department of Metallurgical and Material Engineering
来源
关键词
Austenite; Martensite; Bainite; Ultimate Tensile Strength; Ductile Fracture;
D O I
暂无
中图分类号
学科分类号
摘要
The role played by microstructural constituents of high-strength low-alloy (HSLA) steel in controlling the deformation processes has been studied. The steel was solution treated and water quenched followed by ageing at various temperatures. Microstructural characterization has been carried out by using scanning electron microscope and transmission electron microscope. Tensile tests were conducted as per ASTM standard at constant displacement rate. The conditions under which microvoid coalescence was suspended in spite of a constant resident population of void initiating carbide and carbo-nitride particles have been explained. The major role played by the coherency of Cu precipitates in controlling dislocations movement; and hence, plastic flow is thought to be responsible for the effects observed.
引用
收藏
页码:1094 / 1100
页数:6
相关论文
共 50 条
  • [41] Absorption of Hydrogen in High-Strength Low-Alloy Steel during Tensile Deformation in Gaseous Hydrogen
    Takasawa, Koichi
    Ishigaki, Ryoji
    Wada, Yoru
    Kayano, Rinzo
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2011, 97 (05): : A288 - A294
  • [42] Absorption of Hydrogen in High-strength Low-alloy Steel during Tensile Deformation in Gaseous Hydrogen
    Takasawa, Koichi
    Ishigaki, Ryoji
    Wada, Yoru
    Kayano, Rinzo
    ISIJ INTERNATIONAL, 2010, 50 (10) : 1496 - 1502
  • [43] Influence of Deformation and Heat Treatment on the Microstructure and Properties of High-Strength Low-Alloy Steel with Boron
    Matrosov M.Y.
    Martynov P.G.
    Mitrofanov A.V.
    Barabash K.Y.
    Kamenskaya N.I.
    Zvereva M.I.
    Steel in Translation, 2018, 48 (8) : 536 - 540
  • [44] High-Strength Low-Alloy Steels
    Branco, Ricardo
    Berto, Filippo
    METALS, 2021, 11 (07)
  • [45] HIGH-STRENGTH, LOW-ALLOY STEELS
    RASHID, MS
    SCIENCE, 1980, 208 (4446) : 862 - 869
  • [46] HIGH-STRENGTH LOW-ALLOY STEELS
    BENZER, WC
    MACHINE DESIGN, 1968, 40 (21) : 174 - &
  • [47] Effect of Cerium Content on Precipitation Behavior of Inclusions in High-Strength Low-Alloy Steel
    Liu, Yang
    Li, Jing
    Geng, Ruming
    Zhi, Jianguo
    Lu, Bin
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2022, 11 (04) : 560 - 568
  • [48] Effect of temperature and cooling regime on mechanical properties of high-strength low-alloy steel
    Aziz, Esam M.
    Kodur, Venkatesh K.
    FIRE AND MATERIALS, 2016, 40 (07) : 926 - 939
  • [49] Effect of Cerium on the Nucleation and Microstructure of High-Strength Low-Alloy Steel During Solidification
    Huang, Fei
    Li, Jing
    TMS 2024 153RD ANNUAL MEETING & EXHIBITION: SUPPLEMENTAL PROCEEDINGS, 2024, : 1400 - 1411
  • [50] Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel
    Zhang Shiqi
    Fan Endian
    Wan Jifang
    Liu Jing
    Huang Yunhua
    Li Xiaogang
    CORROSION SCIENCE, 2018, 139 : 83 - 96