Nonparametric density estimation in compound Poisson processes using convolution power estimators

被引:0
作者
Fabienne Comte
Céline Duval
Valentine Genon-Catalot
机构
[1] Université Paris Descartes,MAP5, UMR CNRS 8145
来源
Metrika | 2014年 / 77卷
关键词
Convolution; Compound Poisson process; Inverse problem; Nonparametric estimation; Parameter estimation; 62G07; 60G51; 62F12;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a compound Poisson process which is discretely observed with sampling interval Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} until exactly n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} nonzero increments are obtained. The jump density and the intensity of the Poisson process are unknown. In this paper, we build and study parametric estimators of appropriate functions of the intensity, and an adaptive nonparametric estimator of the jump size density. The latter estimation method relies on nonparametric estimators of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}th convolution powers density. The L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-risk of the adaptive estimator achieves the optimal rate in the minimax sense over Sobolev balls. Numerical simulation results on various jump densities enlight the good performances of the proposed estimator.
引用
收藏
页码:163 / 183
页数:20
相关论文
共 43 条
[1]  
Basawa IV(1982)Nonparametric estimation for nondecreasing Lévy processes J Roy Stat Soc Ser B 44 262-269
[2]  
Brockwell PJ(1998)Minimum contrast estimators on sieves: exponential bounds and rates of convergence Bernoulli 4 329-375
[3]  
Birgé L(2003)Decompounding: an estimation problem for Poisson random sums Ann Stat 31 1054-1074
[4]  
Massart P(2009)Weighted empirical processes in the nonparametric inference for Lévy processes Math Methods Stat 18 281-309
[5]  
Buchmann B(2010)Nonparametric estimation for a class of Lévy processes J Econom 157 257-271
[6]  
Grübel R(2013)Fast nonparametric estimation for convolutions of densities Can J Stat 41 617-636
[7]  
Buchmann B(2009)Nonparametric estimation for pure jump Lévy processes based on high frequency data Stoch Process Appl 119 4088-4123
[8]  
Chen SX(2010)Nonparametric adaptive estimation for pure jump Lévy processes Ann Inst Henri Poincaré Probab Stat 46 595-617
[9]  
Delaigle A(2011)Estimation for Lévy processes from high frequency data within a long time interval Ann Stat 39 803-837
[10]  
Hall P(2013)Density estimation for compound Poisson processes from discrete data Stoch Process Appl 123 3963-3986