Remarks on the CH2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_2$$\end{document} of cubic hypersurfaces

被引:0
作者
René Mboro
机构
[1] Université Paris-Saclay,CMLS, Ecole Polytechnique, CNRS
关键词
Algebraic geometry; Hypersurfaces; Algebraic cycles; Rationality problems; Birational invariants; 14E08; 14C25; 14M10; 14C17;
D O I
10.1007/s10711-018-0355-0
中图分类号
学科分类号
摘要
This paper presents two approaches to reducing problems on 2-cycles on a smooth cubic hypersurface X over an algebraically closed field of characteristic ≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ne 2$$\end{document}, to problems on 1-cycles on its variety of lines F(X). The first one relies on osculating lines of X and Tsen-Lang theorem. It allows to prove that CH2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_2(X)$$\end{document} is generated, via the action of the universal P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}-bundle over F(X), by CH1(F(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_1(F(X))$$\end{document}. When the characteristic of the base field is 0, we use that result to prove that if dim(X)≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dim(X)\ge 7$$\end{document}, then CH2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_2(X)$$\end{document} is generated by classes of planes contained in X and if dim(X)≥9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dim(X)\ge 9$$\end{document}, then CH2(X)≃Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_2(X)\simeq {\mathbb {Z}}$$\end{document}. Similar results, with slightly weaker bounds, had already been obtained by Pan (Math Ann 1–28, 2016). The second approach consists of an extension to subvarieties of X of higher dimension of an inversion formula developped by Shen (J Algebraic Geom 23:539–569, 2014, Rationality, universal generation and the integral Hodge conjecture, arXiv:1602.07331) in the case of 1-cycles of X. This inversion formula allows to lift torsion cycles in CH2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_2(X)$$\end{document} to torsion cycles in CH1(F(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_1(F(X))$$\end{document}. For complex cubic 5-folds, it allows to prove that the birational invariant provided by the group CH3(X)tors,AJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}^3(X)_{tors,AJ}$$\end{document} of homologically trivial, torsion codimension 3 cycles annihilated by the Abel–Jacobi morphism is controlled by the group CH1(F(X))tors,AJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CH}}_1(F(X))_{tors,AJ}$$\end{document} which is a birational invariant of F(X), possibly always trivial for Fano varieties.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 48 条
[1]  
Altman AB(1977)Foundation of the theory of the Fano schemes Compos. Math. 34 3-47
[2]  
Kleiman SL(1972)Some elementary examples of unirational varieties which are not rational Proc. Lond. Math. Soc. 3 75-95
[3]  
Artin M(1978)Fano-varieties of lines on hypersurfaces Archiv. Math. 31 96-104
[4]  
Mumford D(1977)Variétés de Prym et Jacobiennes intermédiaires Ann. Sci. École Norm. Sup. 10 309-391
[5]  
Barth W(1985)La variété des droites d’une hypersurface cubique de dimension 4 C. R. Acad. Sci. Paris Sér. I Math. 301 703-706
[6]  
Van de Ven A(1979)Torsion algebraic cycles and a theorem of Roitman Comp. Math. 39 107-127
[7]  
Beauville A(1974)Gersten’s conjecture and the homology of schemes Ann. Sci. École Norm. Sup. Sér. 4 181-201
[8]  
Beauville A(1983)Remarks on orrespondences and algebraic cycles Am. J. of Math. 105 1235-1253
[9]  
Donagi R(1972)The intermediate Jacobian of the cubic threefold Ann. of Math. 95 281-356
[10]  
Bloch S(1989)Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford Invent. math. 97 141-158