Analysis of Thermal-Conductivity Measurement Data from International Comparison of National Laboratories

被引:0
作者
B. Hay
R. Zarr
C. Stacey
L. Lira-Cortes
U. Hammerschmidt
N. Sokolov
J. Zhang
J.-R. Filtz
N. Fleurence
机构
[1] Scientific and Industrial Metrology Centre,
[2] Laboratoire National de Métrologie et d’Essais,undefined
[3] Engineering Laboratory,undefined
[4] National Institute of Standards and Technology,undefined
[5] Thermal Performance Group,undefined
[6] Materials Division,undefined
[7] National Physical Laboratory,undefined
[8] Centro Nacional de Metrología,undefined
[9] Área Eléctrica,undefined
[10] Division de Termometría,undefined
[11] Physikalisch-Technische Bundesanstalt,undefined
[12] D.I. Mendeleyev Institute for Metrology,undefined
[13] Heat Division,undefined
[14] National Institute of Metrology,undefined
来源
International Journal of Thermophysics | 2013年 / 34卷
关键词
Guarded hot plate; Insulating materials; Interlaboratory comparison; Thermal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
For the first time under the auspices of the Bureau International des Poids et Mesures (BIPM), seven national metrology institutes (NMIs) participated in an international interlaboratory comparison on thermal-conductivity measurements by the guarded hot-plate method. Measurements were conducted successively by all participants on the same set of specimens of insulating materials (mineral wool and expanded polystyrene) at temperatures ranging from 10 °C to 40 °C, according to the International Standard ISO 8302. This protocol aims to minimize issues of material variability by circulating the same pairs of specimens among the laboratories following the strict format of a round-robin test program. This comparison is a pilot study which is intended as a first stage for future key comparisons between NMIs. The descriptive analysis of obtained results shows good agreement between laboratories for the mineral wool (MW) specimens and the thicker specimens of expanded polystyrene (EPS), with relative deviations within the uncertainties of measurement. A positive drift of thermal-conductivity values, which has appeared progressively during the comparison process, seems to be correlated with the size of the metering area of the guarded hot plates used. A statistical analysis was applied to repeated thermal-conductivity measurements at 23 °C, to identify anomalous and outlying data, to assess the within- and between-laboratory variability, and to evaluate the participant laboratories’ performance.
引用
收藏
页码:737 / 762
页数:25
相关论文
共 50 条
[41]   Thermal Conductivity Measurement of Industrial Rubber Compounds using Laser Flash Analysis: Applicability, Comparison and Evaluation [J].
Gschwandl, M. ;
Kerschbaumer, R. C. ;
Schrittesser, B. ;
Fuchs, P. F. ;
Stieger, S. ;
Meinhart, L. .
PROCEEDINGS OF PPS-34: THE 34TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY - CONFERENCE PAPERS, 2019, 2065
[42]   Comparison to Back Analysis Method For Thermal Conductivity of Rcc [J].
Xing, Zhenxian ;
Zhao, Yuqing .
SUSTAINABLE DEVELOPMENT OF URBAN ENVIRONMENT AND BUILDING MATERIAL, PTS 1-4, 2012, 374-377 :2384-2387
[43]   Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: Uncertainty analysis of the thermal-conductivity parameterization [J].
Fuchs, Sven ;
Balling, Niels .
GEOTHERMICS, 2016, 64 :42-54
[44]   Thin-Film Thermal-Conductivity Measurement on Semi-Conducting Polymer Material Using the 3ω Technique [J].
Rausch, S. ;
Rauh, D. ;
Deibel, C. ;
Vidi, S. ;
Ebert, H. P. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (05) :820-830
[45]   Thin-Film Thermal-Conductivity Measurement on Semi-Conducting Polymer Material Using the 3ω Technique [J].
S. Rausch ;
D. Rauh ;
C. Deibel ;
S. Vidi ;
H. P. Ebert .
International Journal of Thermophysics, 2013, 34 :820-830
[46]   A NEW METHOD FOR THERMAL-DIFFUSIVITY AND THERMAL-CONDUCTIVITY EVALUATION FROM TRANSIENT HOT-STRIP MEASUREMENTS [J].
SONG, YW ;
GROSS, U ;
HAHNE, E .
FLUID PHASE EQUILIBRIA, 1993, 88 (pt 5) :291-302
[47]   Analysis of thermal conductivity data in heavy fermion compounds [J].
Kletowski, Z ;
Coqblin, B .
SOLID STATE COMMUNICATIONS, 2005, 135 (11-12) :711-715
[48]   Analysis of the 3-omega method for thermal conductivity measurement [J].
Wang, Hainan ;
Sen, Mihir .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (7-8) :2102-2109
[49]   Thermal conductivity from core and well log data [J].
Hartmann, A ;
Rath, V ;
Clauser, C .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2005, 42 (7-8) :1042-1055
[50]   A methodology to determine thermal conductivity of soils from flux measurement [J].
Mondal, Somenath ;
Padmakumar, G. P. ;
Sharma, V. ;
Singh, Devendra Narain ;
Baghini, Maryam Shojaei .
GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2016, 11 (01) :73-85