Synchronization of stochastic lattice equations

被引:0
作者
Hakima Bessaih
María J. Garrido-Atienza
Verena Köpp
Björn Schmalfuß
Meihua Yang
机构
[1] University of Wyoming,Department of Mathematics
[2] Universidad de Sevilla,Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas
[3] Friedrich Schiller Universität Jena,Institut für Stochastik
[4] Huazhong University of Science and Technology,School of Mathematics and Statistics
来源
Nonlinear Differential Equations and Applications NoDEA | 2020年 / 27卷
关键词
Synchronization; Stochastic lattice equations; Random dynamical systems; Random inertial manifolds; Primary 60G10; Secondary 37L55; 37C75; 37L99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a system of two coupled nonlinear lattice stochastic equations driven by additive white noise processes. We prove the master slave synchronization of the components of the coupled system, namely, for t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document} the solution of one of the subsystems (the slave component) converges to the values of a Lipschitz continuous function of the other component, the master component. To establish this kind of synchronization we will prove the existence of an exponentially attracting random invariant manifold for the coupled system.
引用
收藏
相关论文
共 73 条
  • [1] Afraimovich VS(1997)Synchronization in lattices of coupled oscillators Physica D 103 442-451
  • [2] Chow S-N(1995)Stochastic inertial manifold Stoch. Stoch. Rep. 53 13-39
  • [3] Hale JK(2017)Stochastic lattice dynamical systems with fractional noise SIAM J. Math. Anal. 49 1495-1518
  • [4] Bensoussan A(2016)Stochastic shell models driven by a multiplicative fractional Brownian motion Physica D 320 38-56
  • [5] Flandoli F(2001)Ephaptic coupling of myelinated nerve fibers Physica D 148 159-174
  • [6] Bessaih H(2010)Invariant manifolds for random and stochastic partial differential equations Adv. Nonlinear Stud. 10 23-52
  • [7] Garrido-Atienza MJ(1998)Upper semicontinuity of attractors and synchronization J. Math. Anal. Appl. 220 13-41
  • [8] Han X(1988)Invariant manifolds for flows in Banach spaces J. Differ. Equ. 74 285-317
  • [9] Schmalfuß B(1988)Cellular neural networks: theory IEEE Trans. Circuits Syst. 35 1257-1272
  • [10] Bessaih H(1988)Cellular neural networks: applications IEEE Trans. Circuits Syst. 35 1273-1290