The influence of the chemical potential oscillations on the de Haas-van Alphen effect in quasi-two-dimensional compounds

被引:0
作者
P. Grigoriev
机构
[1] Landau Institute for Theoretical Physics,
[2] Grenoble High Magnetic Field Laboratory MPI-FKF and CNRS,undefined
[3] BP 166,undefined
来源
Journal of Experimental and Theoretical Physics | 2001年 / 92卷
关键词
Fermi Surface; Cyclotron Resonance; Simple Algorithm; Electron Mass; Arbitrary Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
The de Haas-van Alphen effect in quasi-two-dimensional metals is studied at arbitrary parameters. Oscillations of the chemical potential can substantially change the temperature dependence of harmonic amplitudes that is commonly used to determine the effective electron mass. The processing of the experimental data using the standard Lifshitz-Kosevich formula can therefore lead to substantial errors even in the strong harmonic damping limit. This can explain the difference between the effective electron masses determined from the de Haas-van Alphen effect and the cyclotron resonance measurements. The oscillations of the chemical potential and the deviations from the Lifshitz-Kosevich formula depend on the reservoir density of states that exists in organic metals due to open sheets of the Fermi surface. This dependence can be used to determine the density of electron states on open sheets of the Fermi surface. We present analytical results of the calculations of harmonic amplitudes in some limiting cases that show the importance of the chemical potential oscillations. We also describe a simple algorithm for a numerical calculation of the harmonic amplitudes for arbitrary reservoir density of states, arbitrary warping, spin-splitting, temperature, and Dingle temperature.
引用
收藏
页码:1090 / 1094
页数:4
相关论文
共 21 条
  • [1] de Haas W. J.(1930)undefined Commun. Phys. Lab. Univ. Leiden A 212 215-undefined
  • [2] van Alphen P. M.(1956)undefined Zh. Éksp. Teor. Fiz. 29 730-undefined
  • [3] Lifshitz L. M.(1952)undefined Proc. R. Soc. London, Ser. A 211 517-undefined
  • [4] Kosevich A. M.(1974)undefined J. Phys. Soc. Jpn. 36 959-undefined
  • [5] Dingle R. B.(1989)undefined Phys. Rev. B 40 12126-undefined
  • [6] Ando T.(1988)undefined Phys. Rev. B 38 6301-undefined
  • [7] Uemura Y.(1990)undefined Phys. Rev. B 42 7132-undefined
  • [8] Efetov K. B.(1991)undefined Phys. Rev. Lett. 67 263-undefined
  • [9] Marikhin V. G.(1997)undefined Phys. Rev. B 55 4931-undefined
  • [10] Maniv T.(1996)undefined Phys. Rev. B 54 9977-undefined