Function spaces not containing ℓ1

被引:0
作者
S. A. Argyros
A. Manoussakis
M. Petrakis
机构
[1] National Technical University of Athens,Department of Mathematics
[2] Technical University of Crete,Department of Sciences
来源
Israel Journal of Mathematics | 2003年 / 135卷
关键词
Banach Space; Open Subset; Function Space; Separable Banach Space; Reflexive Banach Space;
D O I
暂无
中图分类号
学科分类号
摘要
For Ω bounded and open subset of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$B^{d_0 } $$ \end{document} andX a reflexive Banach space with 1-symmetric basis, the function spaceJFX(Ω) is defined. This class of spaces includes the classical James function space. Every member of this class is separable and has non-separable dual. We provide a proof of topological nature thatJFX(Ω) does not contain an isomorphic copy of ℓ1. We also investigate the structure of these spaces and their duals.
引用
收藏
页码:29 / 81
页数:52
相关论文
共 25 条
[1]  
Amemiya I.(1981)Weakly null sequences in James spaces on trees Kodai Mathematical Journal 4 418-425
[2]  
Ito T.(2002)Optimal sequences of continuous functions converging to a Baire-1 function Mathematische Annalen 324 689-729
[3]  
Argyros S. A.(1982)Transfinite duals of quasi-reflexive Banach spaces Transactions of the American Mathematical Society 273 551-577
[4]  
Kanellopoulos V.(1989)Quasi-reflexive and tree spaces constructed in the spirit of R. C. James Contemporary Mathematics 85 19-44
[5]  
Bellenot S.(1958)On bases and unconditional convergence in Banach spaces Studia Mathematica 17 151-164
[6]  
Bellenot S.(1994), ℓ Transactions of the American Mathematical Society 344 407-420
[7]  
Haydon R.(1976) ℓ Mathematical Proceedings of the Cambridge Philosophical Society 80 269-276
[8]  
Odell E.(1977)A counterexample to several questions about Banach spaces Studia Mathematica 60 289-308
[9]  
Bessaga C.(1974)A separable somewhat reflexive Banach space with non-separable dual Bulletin of the American Mathematical Society 80 738-743
[10]  
Pelczynski A.(1990)A clasification of Baire class 1 functions Transactions of the American Mathematical Society 318 209-236