On the higher differentiability of solutions to a class of variational problems of fast growth

被引:0
作者
Arrigo Cellina
Vasile Staicu
机构
[1] Università degli Studi di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
[2] University of Aveiro,CIDMA and Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2018年 / 57卷
关键词
35B65; 49N60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the higher differentiability of a solution u to the problem of minimizing ∫Ω[Λ(x,|∇v(x)|)+f(x)v(x)]dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{\Omega }[\Lambda (x ,|\nabla v(x)|) +f(x)v(x)]dx \end{aligned}$$\end{document}where Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} is of fast growth in the second variable, i.e., we assume that Λ(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (x,t)$$\end{document} grows in t faster than tN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^N$$\end{document}, where N is the dimension of the space. We do not assume conditions limiting above the size of the second derivative of Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} with respect to t.
引用
收藏
相关论文
共 14 条
[1]  
Baroni P(2016)Non-autonomous functionals, borderline cases and related function classes St. Petersb. Math. J. 27 347-379
[2]  
Colombo M(2015)A case of regularity of solutions to nonregular problems SIAM J. Control Optim. 53 2835-2845
[3]  
Mingione G(2017)The regularity of solutions to some variational problems, including the p-Laplace equation for ESAIM Control Optim. Calc. Var. 23 1543-1553
[4]  
Cellina A(2009)On the Euler–Lagrange equation for functionals of the calculus of variations without upper growth conditions SIAM J. Control Optim. 48 2857-2870
[5]  
Cellina A(1998)Some remarks on the regularity of weak solutions of degenerate elliptic systems Rev. Mat. Complut. 11 203-219
[6]  
Degiovanni M(1992)On the regularity of a minimizer of a functional with exponential growth Comment. Math. Univ. Carol. 33 45-49
[7]  
Marzocchi M(1993)Regularity for elliptic equations with general growth conditions J. Differ. Equ. 105 296-333
[8]  
Esposito L(1996)Everywhere regularity for a class of elliptic systems without growth conditions Ann. Sci. Norm. Pisa IV 23 1-25
[9]  
Mingione G(2006)Nonlinear elliptic systems with general growth J. Differ. Equ. 221 412-443
[10]  
Lieberman GM(undefined)undefined undefined undefined undefined-undefined