Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space

被引:0
作者
Abhishek Muhuri
Debdeep Sinha
Subir Ghosh
机构
[1] Indian Institute of Science Education and Research Kolkata,Department of Physical Sciences
[2] Indian Statistical Institute,Physics and Applied Mathematics Unit
来源
The European Physical Journal Plus | / 136卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement, induced by spatial noncommutativity, is investigated for an anisotropic harmonic oscillator. Exact solutions for the system are obtained after the model is re-expressed in terms of canonical variables, by performing a particular Bopp’s shift to the noncommutating degrees of freedom. Employing Simon’s separability criterion, we find that the states of the system are entangled provided a unique function of the (mass and frequency) parameters obeys an inequality. Entanglement of Formation for this system is also computed and its relation to the degree of anisotropy is discussed. It is worth mentioning that, even in a noncommutative space, entanglement is generated only if the harmonic oscillator is anisotropic. Interestingly, the Entanglement of Formation saturates for higher values of the deformation parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, that quantifies spatial noncommutativity.
引用
收藏
相关论文
共 208 条
  • [1] Horodecki R(2009)Noncommutative Chern–Simons soliton Rev. Mod. Phys. 81 865-942
  • [2] Horodecki P(2013)Maxwell–Chern–Simons theory is free for marginally noncommutative spacetimes Phys. Rev. Lett. 110 260407-351
  • [3] Horodecki M(1998)Energy crisis or a new soliton in the noncommutative CP(1) model? J. Contemp. Phys. 39 431-8420
  • [4] Horodecki K(2012)Seiberg–Witten map and the axial anomaly in noncommutative field theory J. Phys. A: Math. Theor. 45 24-1345
  • [5] Yin J(2016)The CP Phys. Rep. 646 1-266
  • [6] Cao Y(2015)1 model with Hopf interaction: the quantum theory TASI 5 297-352
  • [7] Yong H-L(2006)undefined Phys. Rev. Lett. 96 181602-372
  • [8] Ren J-G(2011)undefined Liv. Rev. Relat. 14 8-167
  • [9] Liang H(2005)undefined J. Phys. A 38 8409-377
  • [10] Liao S-K(2009)undefined Phys. Rev. A 79 042109-674