Proton micromachining: a new technique for the production of three-dimensional microstructures

被引:0
作者
J.A. van Kan
J. L. Sanchez
T. Osipowicz
F. Watt
机构
[1] Research Centre for Nuclear Microscopy Department of Physics National University of Singapore Lower Kent Ridge Road,
[2] Singapore 119260,undefined
[3] Singapore,undefined
来源
Microsystem Technologies | 2000年 / 6卷
关键词
Microstructure; Aspect Ratio; PMMA; Single Layer; Feature Size;
D O I
暂无
中图分类号
学科分类号
摘要
A novel technique for the fabrication of high aspect ratio three-dimensional (3D) microstructures is presented. A suitable resist (e.g. PMMA or SU-8) is exposed using focused MeV (million electron volt) protons in a direct write process to produce 3D microstructures with sub-micrometer feature sizes. By adjusting the energy of the proton beam, the depth of the microstructures can be controlled very accurately (e.g. between 5 and 160 μm). Single layer SU-8, a newly developed, chemically accelerated, negative tone, near UV, photo-resist, has been used in multiple exposures using different proton energies to produce intricate 3D microstructures. The combination of a well controlled exposure depth coupled with the ability to tilt the sample with respect to the beam increases the manufacturing capability, and allows the production of complex microstructures with well defined edges in single layers of resist.
引用
收藏
页码:82 / 85
页数:3
相关论文
共 50 条
[11]   THREE-DIMENSIONAL GOLD NANORODS-DOPED MULTICOLOR MICROSTRUCTURES [J].
Lien, C. -H. ;
Cho, K. -C. ;
Kuo, W. -S. ;
Lin, C. -Y. ;
Chui, C. -L. ;
Chen, S. -J. .
PLASMONICS IN BIOLOGY AND MEDICINE IX, 2012, 8234
[12]   Various replication techniques for manufacturing three-dimensional metal microstructures [J].
R. Ruprecht ;
T. Benzler ;
T. Hanemann ;
K. Müller ;
J. Konys ;
V. Piotter ;
G. Schanz ;
L. Schmidt ;
A. Thies ;
H. Wöllmer ;
J. Haußelt .
Microsystem Technologies, 1997, 4 :28-31
[13]   Three-dimensional numerical testing of microstructures of particle reinforced composites [J].
Mishnaevsky, LL .
ACTA MATERIALIA, 2004, 52 (14) :4177-4188
[15]   Preparation of high-quality three-dimensional microstructures on polymethyl methacrylate surfaces by femtosecond laser micromachining and thermal-induced micro-leveling [J].
Ouyang, Ziqing ;
Long, Jiangyou ;
Wu, Junwei ;
Lin, Jinghao ;
Xie, Xiaozhu ;
Tan, Guibin ;
Yi, Xiaohong .
OPTICS AND LASER TECHNOLOGY, 2022, 145
[16]   Modelling intergranular stress corrosion cracking in simulated three-dimensional microstructures [J].
Jivkov, A. P. ;
Stevens, N. P. C. ;
Marrow, T. J. .
MECHANICAL BEHAVIOR OF MATERIALS X, PTS 1AND 2, 2007, 345-346 :1019-+
[17]   Micromolding for three-dimensional metal microstructures using stereolithography of photopolymerized resin [J].
Mukai, Kohki ;
Kitayama, Shinya ;
Kawajiri, Yasunobu ;
Maruo, Shoji .
MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) :1169-1172
[18]   Fibrillogenesis of human ß2-microglobulin in three-dimensional silicon microstructures [J].
Merlo, Sabina ;
Barillaro, Giuseppe ;
Carpignano, Francesca ;
Silva, Gloria ;
Surdo, Salvatore ;
Strambini, Lucanos M. ;
Giorgetti, Sofia ;
Nichino, Daniela ;
Relini, Annalisa ;
Mazzini, Giuliano ;
Stoppini, Monica ;
Bellotti, Vittorio .
JOURNAL OF BIOPHOTONICS, 2012, 5 (10) :785-792
[19]   Modeling and Fitting of Three-Dimensional Mineral Microstructures by Multinary Random Fields [J].
Jakob Teichmann ;
Peter Menzel ;
Thomas Heinig ;
Karl Gerald van den Boogaart .
Mathematical Geosciences, 2021, 53 :877-904
[20]   Modeling and Fitting of Three-Dimensional Mineral Microstructures by Multinary Random Fields [J].
Teichmann, Jakob ;
Menzel, Peter ;
Heinig, Thomas ;
van den Boogaart, Karl Gerald .
MATHEMATICAL GEOSCIENCES, 2021, 53 (05) :877-904