Forward Synthesis of Polarized Emission in Target DKIST Coronal Lines Applied to 3D MURaM Coronal Simulations

被引:0
作者
Thomas Schad
Gabriel Dima
机构
[1] National Solar Observatory,
来源
Solar Physics | 2020年 / 295卷
关键词
Magnetic fields; Corona; Polarization; Optical;
D O I
暂无
中图分类号
学科分类号
摘要
Self-consistent magnetohydrodynamic simulations of the solar corona with fine (≲10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lesssim10$\end{document} km) grid scales are now being realized in parallel to advancements in high-resolution coronal spectropolarimetry provided by the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). We investigate the synthesis of polarized emission in the presence of apparent coronal fine structure exhibited by 3D MURaM coronal simulations for the key polarized spectral lines targeted by DKIST, namely Fe xivλ5303\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda5303$\end{document}, Fe xiλ7892\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda7892$\end{document}, Fe xiiiλ10746\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda10746$\end{document}, Fe xiiiλ10798\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda10798$\end{document}, Si xλ14301\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda14301$\end{document}, and Si ixλ39343\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda39343$\end{document}. To benchmark our calculations, we provide detailed comparisons between the employed polarized line formation theory and established scalar line synthesis tools provided by the Chianti database team. To accelerate polarized synthesis for large simulations, we create efficient lookup tables based on atomic models significantly larger than previous studies. The spectral data cubes we describe provide a useful guide for the new era of multi-spectral DKIST coronal diagnostics as we discuss specific analysis techniques and challenges.
引用
收藏
相关论文
共 119 条
[1]  
Arnaud J.(1987)undefined Astron. Astrophys. 178 263-undefined
[2]  
Newkirk G.(2005)undefined Astrophys. J. 633 499-undefined
[3]  
Aschwanden M.J.(2009)undefined Annu. Rev. Astron. Astrophys. 47 481-undefined
[4]  
Nightingale R.W.(1999)undefined Astrophys. J. 522 524-undefined
[5]  
Asplund M.(2000)undefined Astrophys. J. 533 574-undefined
[6]  
Grevesse N.(2017)undefined Space Sci. Rev. 210 145-undefined
[7]  
Sauval A.J.(2014)undefined Astrophys. J. 789 82-undefined
[8]  
Scott P.(2018)undefined Astrophys. J. 852 52-undefined
[9]  
Casini R.(2003)undefined Astron. Astrophys. 406 1089-undefined
[10]  
Judge P.G.(2018)undefined Living Rev. Solar Phys. 15 5-undefined