The proton polarizability effect in the muonic-hydrogen Lamb shift comes out as a prediction of baryon chiral perturbation theory at leading order and our calculation yields ΔE(pol)(2P-2S)=8-1+3μ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta E^{(\mathrm{pol})} (2P-2S) = 8^{+3}_{-1}\, \upmu $$\end{document}eV. This result is consistent with most of evaluations based on dispersive sum rules, but it is about a factor of 2 smaller than the recent result obtained in heavy-baryon chiral perturbation theory. We also find that the effect of Δ(1232)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta (1232)$$\end{document}-resonance excitation on the Lamb shift is suppressed, as is the entire contribution of the magnetic polarizability; the electric polarizability dominates. Our results reaffirm the point of view that the proton structure effects, beyond the charge radius, are too small to resolve the ‘proton radius puzzle’.