Classification Theorems of Complete Space-Like Lagrangian ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-Surfaces in the Pseudo-Euclidean Space R24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^4_2$$\end{document}

被引:0
作者
Xingxiao Li
Ruina Qiao
Yangyang Liu
机构
[1] Henan Normal University,School of Mathematics and Information Sciences
关键词
Mean curvature; Second fundamental form; Lagrangian space-like ; -submanifolds; Classification; 53C40; 53C44;
D O I
10.1007/s00574-020-00235-4
中图分类号
学科分类号
摘要
ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-submanifolds and ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-translators are, respectively, the natural generalizations of self-shrinkers and translators of the mean curvature flow and, in the case of codimension one, they are previously known as λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-hypersurfaces and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-translators, respectively. In this paper, we study the complete Lagrangian space-like ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-surfaces and ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-translators in R24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^4_2$$\end{document}, the pseudo-Euclidean 4-spaces of signature 2 endowed with the canonical complex structure. As the result, we first obtain a classification theorem for all complete Lagrangian space-like ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-surfaces in R24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^4_2$$\end{document} of constant square norm of the second fundamental form. Then the main idea of the proof also allows us to obtain a similar classification theorem for ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-translators in R24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^4_2$$\end{document} by a Bernstein-type theorem for space-like translators in a general pseudo-Euclidean space Rpm+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^{m+p}_p$$\end{document}, which is of independent significance.
引用
收藏
页码:863 / 878
页数:15
相关论文
共 61 条
[1]  
Abresch U(1986)The normalized curve shortening flow and homothetic solutions J. Differ. Geom. 23 175-196
[2]  
Langer J(2014)Space-like self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces Commun. Anal. Geom. 22 897-929
[3]  
Adames MR(1994)Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle Calc. Var. Partial Differ. Equ. 2 101-111
[4]  
Altschuler SJ(2014)Gauss map of translating solitons of mean curvature flow Proc. Am. Math. Soc. 142 1331-1344
[5]  
Wu LF(2013)A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension Calc. Var. Partial Differ. Equ. 46 879-889
[6]  
Bao C(2010)Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean space Proc. Am. Math. Soc. 138 1821-1832
[7]  
Shi YG(2014)The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow Int. Math. Res. Not. 6 1515-1527
[8]  
Cao HD(2012)Rigidity of entire self-shrinking solutions to curvature flows J. Reine Angew. Math. 664 229-239
[9]  
Li HZ(2016)Rigidity of self-shrinkers and translating solitons of mean curvature flows Adv. Math. 294 517-531
[10]  
Castro I(2014)Omori–Yau maximum principles, V-harmonic maps and their geometric applications Ann. Glob. Anal. Geom. 46 259-279