Approximation algorithm for a class of global optimization problems

被引:0
作者
Marco Locatelli
机构
[1] Università di Parma,Dipartimento di Ingegneria dell’Informazione
来源
Journal of Global Optimization | 2013年 / 55卷
关键词
Approximation algorithms; Nondecreasing functions; Superhomogeneous functions; Ratio functions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop and derive the computational cost of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} -approximation algorithm for a class of global optimization problems, where a suitably defined composition of some ratio functions is minimized over a convex set. The result extends a previous one about a class of Linear Fractional/Multiplicative problems.
引用
收藏
页码:13 / 25
页数:12
相关论文
共 50 条