Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine

被引:0
作者
Eduardo P. Cappa
Charles Chen
Jennifer G. Klutsch
Jaime Sebastian-Azcona
Blaise Ratcliffe
Xiaojing Wei
Letitia Da Ros
Aziz Ullah
Yang Liu
Andy Benowicz
Shane Sadoway
Shawn D. Mansfield
Nadir Erbilgin
Barb R. Thomas
Yousry A. El-Kassaby
机构
[1] Instituto Nacional de Tecnología Agropecuaria (INTA),Department of Biochemistry and Molecular Biology
[2] Instituto de Recursos Biológicos,Department of Renewable Resources
[3] Centro de Investigación en Recursos Naturales,Present address: Department of Forestry
[4] Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),Department of Forest and Conservation Sciences, Faculty of Forestry
[5] Oklahoma State University,Department of Wood Science, Faculty of Forestry
[6] University of Alberta,undefined
[7] New Mexico Highlands University,undefined
[8] Present address: Irrigation and Crop Ecophysiology Group,undefined
[9] Instituto de Recursos Naturales y Agrobiología de Sevilla,undefined
[10] Avenida Reina Mercedes,undefined
[11] University of British Columbia,undefined
[12] University of British Columbia,undefined
[13] Forest Stewardship and Trade Branch,undefined
[14] Alberta Agriculture and Forestry,undefined
[15] Blue Ridge Lumber Inc.,undefined
[16] West Fraser Mills Ltd,undefined
来源
BMC Genomics | / 23卷
关键词
Quantitative genetic parameters; Genomic prediction; Genome wide association analyses; Single- and multiple-trait mixed models; Lodgepole pine;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 256 条
[1]  
Chang W-Y(2019)A financial analysis of using improved planting stock of white spruce and lodgepole pine in Alberta, Canada: genomic selection versus traditional breeding For An Int J For Res 92 297-310
[2]  
Gaston C(2017)Genetic analysis of lodgepole pine (Pinus contorta) solid-wood quality traits Can J For Res 47 1303-1313
[3]  
Cool J(2019)Estimation of genetic parameters, provenance performances, and genotype by environment interactions for growth and stiffness in lodgepole pine (Pinus contorta) Scand J For Res 34 1-11
[4]  
Thomas BR(2022)Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program PLoS One 17 e0264549-1829
[5]  
Hayatgheibi H(2001)Prediction of total genetic value using genome-wide dense marker maps Genetics. 157 1819-94
[6]  
Fries A(2016)Performance of genomic prediction within and across generations in maritime pine BMC Genomics 17 604-1510
[7]  
Kroon J(2020)Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce Evol Appl 13 76-1522
[8]  
Wu HX(2020)Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in scots pine BMC Genomics 21 796-287
[9]  
Hayatgheibi H(2014)Genomic selection accuracies within and between environments and small breeding groups in white spruce BMC Genomics 15 1048-596
[10]  
Fries A(2017)Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus BMC Genomics 18 524-68