Generalized convexity for non-regular optimization problems with conic constraints

被引:0
作者
B. Hernández-Jiménez
R. Osuna-Gómez
M. A. Rojas-Medar
L. Batista dos Santos
机构
[1] Universidad Pablo de Olavide,Departamento de Economía, Métodos Cuantitativos e Ha. Económica, Area de Estadística e Investigación Operativa
[2] Universidad de Sevilla,Departamento de Estadística e Investigación Operativa
[3] Universidad del Bío-Bío,Departamento de Ciencias Básicas, Facultad de Ciencias
[4] Campus Fernando May,Departamento de Matemáticas
[5] Universidade do Paraná,undefined
来源
Journal of Global Optimization | 2013年 / 57卷
关键词
Generalized convexity; Regularity; Constraints qualifications; Optimality conditions;
D O I
暂无
中图分类号
学科分类号
摘要
In non-regular problems the classical optimality conditions are totally inapplicable. Meaningful results were obtained for problems with conic constraints by Izmailov and Solodov (SIAM J Control Optim 40(4):1280–1295, 2001). They are based on the so-called 2-regularity condition of the constraints at a feasible point. It is well known that generalized convexity notions play a very important role in optimization for establishing optimality conditions. In this paper we give the concept of Karush–Kuhn–Tucker point to rewrite the necessary optimality condition given in Izmailov and Solodov (SIAM J Control Optim 40(4):1280–1295, 2001) and the appropriate generalized convexity notions to show that the optimality condition is both necessary and sufficient to characterize optimal solutions set for non-regular problems with conic constraints. The results that exist in the literature up to now, even for the regular case, are particular instances of the ones presented here.
引用
收藏
页码:649 / 662
页数:13
相关论文
共 29 条
  • [1] Arutyunov A.V.(2008)Necessary optimality conditions for constrained optimization problems under relaxed constrained qualifications Math. Program. 114 37-68
  • [2] Avakov E.R.(1985)Extremum conditions for smooth problems with equality-type constraints USSR Comput. Math. Math. Phys. 25 24-32
  • [3] Izmailov A.F.(1989)Necessry extremum conditions for smooth abnormal problems with equality- and inequality-type constrains Math. Notes 45 431-437
  • [4] Avakov E.R.(1990)Necessary conditions for a minimum for nonregular problems in Banach spaces. The maximum principle for abnormal optimal control problems Proc. Steklov Inst. Math. 185 1-32
  • [5] Avakov E.R.(1991)Necessary first-order conditions for abnormal variational calculus problems (in Russian) Differ. Equ. 27 739-745
  • [6] Avakov E.R.(2004)Abnormal problems with a nonclosed image Doklady Math. 70 924-927
  • [7] Avakov E.R.(1981)Invex functions and constrained local minima Bull. Aust. Math. Soc. 24 357-366
  • [8] Avakov A.V.(1981)On sufficiency of the Kuhn–Tucker conditions J. Math. Anal. Appl. 80 545-550
  • [9] Arutyunov E.R.(2009)Generalized convexity in non-regular programming problems with inequality-type constraints J. Math. Anal. Appl. 352 604-613
  • [10] Craven B.D.(2011)Characterization of optimal solutions for nonlinear programming problems with conic constraints Optimization 60 619-626