Periodic solutions for p-Laplacian neutral differential equation with multiple delay and variable coefficients

被引:0
作者
Zhonghua Bi
Zhibo Cheng
Shaowen Yao
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
[2] Sichuan University,Department of Mathematics
来源
Advances in Difference Equations | / 2019卷
关键词
Neutral operator; -Laplacian; Periodic solution; Extension of Mawhin’s continuation theorem; Singularity; 34C25; 34K14;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first discuss some properties of the neutral operator with multiple delays and variable coefficients (Ax)(t):=x(t)−∑i=1nci(t)x(t−δi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(Ax)(t):=x(t)-\sum_{i=1}^{n}c_{i}(t)x(t-\delta _{i})$\end{document}. Afterwards, by using an extension of Mawhin’s continuation theorem, a second order p-Laplacian neutral differential equation (ϕp(x(t)−∑i=1nci(t)x(t−δi))′)′=f˜(t,x(t),x′(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Biggl(\phi _{p} \Biggl(x(t)-\sum_{i=1}^{n}c_{i}(t)x(t- \delta _{i}) \Biggr)' \Biggr)'=\tilde{f} \bigl(t,x(t),x'(t)\bigr) $$\end{document} is studied. Some new results on the existence of a periodic solution are obtained. Meanwhile, the approaches to estimate a priori bounds of periodic solutions are different from those known in the literature.
引用
收藏
相关论文
共 37 条
[1]  
Anane A.(2012)Periodic solutions for J. Differ. Equ. 2012 1-12
[2]  
Chakrone O.(1995)-Laplacian neutral functional differential equations with multiple deviating arguments J. Math. Anal. Appl. 189 378-392
[3]  
Cheng M.(2018)Periodic solutions of linear and quasilinear neutral functional differential equations Mediterr. J. Math. 15 3948-3955
[4]  
Cheng Z.(2009)Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay Nonlinear Anal. 71 381-395
[5]  
Li F.(2013)Positive periodic solution of second-order neutral functional differential equations Math. Slovaca 63 2387-2394
[6]  
Cheung W.(2009)Periodic solution to Nonlinear Anal. 70 448-461
[7]  
Ren J.(2016)-Laplacian neutral Liénard type equation with variable parameter J. Franklin Inst. 353 57-64
[8]  
Han W.(2009)Periodic solutions for generalized Liénard neutral equation with variable parameter J. Franklin Inst. 346 477-488
[9]  
Du B.(2004)Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks Nonlinear Anal. 58 1393-1406
[10]  
Du B.(2009)Periodic solutions for Nonlinear Anal. 70 251-271