The Magnetically-Tuned Transition-Edge Sensor

被引:0
作者
John E. Sadleir
Sang-Jun Lee
Stephen J. Smith
Sarah E. Busch
Simon R. Bandler
Joseph S. Adams
Megan E. Eckart
James A. Chervenak
Richard L. Kelley
Caroline A. Kilbourne
Frederick S. Porter
Jan-Patrick Porst
机构
[1] NASA Goddard Space Flight Center,
来源
Journal of Low Temperature Physics | 2014年 / 176卷
关键词
Low temperature detectors; Supeconductivity; Magnetic field dependence; Superconducting resistive transition width; Superconducting weak-links;
D O I
暂无
中图分类号
学科分类号
摘要
We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor and compare the modified resistive transition with the theoretical prediction (Sadleir et al., IEEE Trans App Supercond 23:2101405, 2013). A TES’s resistive transition is customarily characterized in terms of the unitless device parameters α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities (sensor current I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I$$\end{document} and voltage V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}) and the parameters α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and use these relations to confirm we have stably biased a TES with negative β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.
引用
收藏
页码:392 / 399
页数:7
相关论文
共 11 条
  • [1] Smith SJ(2013)undefined J. Appl. Phys. 114 074513-128
  • [2] Irwin KD(2006)undefined Nuc. Inst. Meth. A 559 718-1289
  • [3] Bailey CN(2012)undefined J. Low Temp. Phys 167 121-undefined
  • [4] Lindeman MA(2004)undefined Rev. Sci. Instrum. 75 1283-undefined
  • [5] Bandler SR(undefined)undefined undefined undefined undefined-undefined
  • [6] Brekosky RP(undefined)undefined undefined undefined undefined-undefined
  • [7] Chervenak J(undefined)undefined undefined undefined undefined-undefined
  • [8] Figueroa-Feliciano E(undefined)undefined undefined undefined undefined-undefined
  • [9] Finkbeiner F(undefined)undefined undefined undefined undefined-undefined
  • [10] Li MJ(undefined)undefined undefined undefined undefined-undefined