Existence of standing pulse solutions to an inhomogeneous reaction-diffusion system

被引:7
|
作者
Jones C.K.R.T. [1 ]
Rubin J.E. [2 ]
机构
[1] Division of Applied Mathematics, Brown University, Providence
[2] Department of Mathematics, Ohio State University, Columbus, OH 43210
基金
美国国家科学基金会;
关键词
Geometric singular perturbation; Inhomogeneous reaction-diffusion system; Semiconductor Fabry-Pérot interferometer; Standing waves;
D O I
10.1023/A:1022651311294
中图分类号
学科分类号
摘要
We prove the existence of locally unique, symmetric standing pulse solutions to homogeneous and inhomogeneous versions of a certain reaction-diffusion system. This system models the evolution of photoexcited carrier density and temperature inside the cavity of a semiconductor Fabry-Pérot interferometer. Such pulses represent the fundamental nontrivial mode of pattern formation in this device. Our results follow from a geometric singular perturbation approach, based largely on Fenichel's theorems and the Exchange Lemma. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 50 条