A Dichotomy in Area-Preserving Reversible Maps

被引:0
|
作者
Mário Bessa
Alexandre A. P. Rodrigues
机构
[1] Universidade da Beira Interior,Departamento de Matemática
[2] Centro de Matemática da Universidade do Porto,undefined
关键词
Reversing symmetry; Area-preserving map; Closing Lemma; Elliptic point; Primary 37D20; 37C20; Secondary 37C27; 34D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study R-reversible area-preserving maps f:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M\rightarrow M$$\end{document} on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that R∘f=f-1∘R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\circ f=f^{-1}\circ R$$\end{document} where R:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R:M\rightarrow M$$\end{document} is an isometric involution. We obtain a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Closing Lemma for reversible maps and other perturbation toolboxes.
引用
收藏
页码:309 / 326
页数:17
相关论文
共 50 条