A Dichotomy in Area-Preserving Reversible Maps

被引:0
|
作者
Mário Bessa
Alexandre A. P. Rodrigues
机构
[1] Universidade da Beira Interior,Departamento de Matemática
[2] Centro de Matemática da Universidade do Porto,undefined
关键词
Reversing symmetry; Area-preserving map; Closing Lemma; Elliptic point; Primary 37D20; 37C20; Secondary 37C27; 34D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study R-reversible area-preserving maps f:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M\rightarrow M$$\end{document} on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that R∘f=f-1∘R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\circ f=f^{-1}\circ R$$\end{document} where R:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R:M\rightarrow M$$\end{document} is an isometric involution. We obtain a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Closing Lemma for reversible maps and other perturbation toolboxes.
引用
收藏
页码:309 / 326
页数:17
相关论文
共 50 条
  • [31] Visualization of Topological Structures in Area-Preserving Maps
    Tricoche, Xavier
    Garth, Christoph
    Sanderson, Allen
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 1765 - 1774
  • [32] CORRECTIONS TO QUASILINEAR DIFFUSION IN AREA-PRESERVING MAPS
    MURRAY, NW
    LIEBERMAN, MA
    LICHTENBERG, AJ
    PHYSICAL REVIEW A, 1985, 32 (04) : 2413 - 2424
  • [33] SPECTRAL PROPERTIES OF RENORMALIZATION FOR AREA-PRESERVING MAPS
    Gaidashev, Denis
    Johnson, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3651 - 3675
  • [34] UNIVERSAL BEHAVIOR IN FAMILIES OF AREA-PRESERVING MAPS
    GREENE, JM
    MACKAY, RS
    VIVALDI, F
    FEIGENBAUM, MJ
    PHYSICA D-NONLINEAR PHENOMENA, 1981, 3 (03) : 468 - 486
  • [35] Elliptic isles in families of area-preserving maps
    Duarte, P.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 1781 - 1813
  • [36] Periodic points for area-preserving birational maps of surfaces
    Katsunori Iwasaki
    Takato Uehara
    Mathematische Zeitschrift, 2010, 266 : 289 - 318
  • [37] A numerical study of infinitely renormalizable area-preserving maps
    Gaidashev, Denis
    Johnson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (03): : 283 - 301
  • [38] Periodic points for area-preserving birational maps of surfaces
    Iwasaki, Katsunori
    Uehara, Takato
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 289 - 318
  • [39] On dynamics and bifurcations of area-preserving maps with homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey
    NONLINEARITY, 2015, 28 (09) : 3027 - 3071
  • [40] Records and Occupation Time Statistics for Area-Preserving Maps
    Artuso, Roberto
    de Oliveira, Tulio M. M.
    Manchein, Cesar
    ENTROPY, 2023, 25 (02)