A Dichotomy in Area-Preserving Reversible Maps

被引:0
|
作者
Mário Bessa
Alexandre A. P. Rodrigues
机构
[1] Universidade da Beira Interior,Departamento de Matemática
[2] Centro de Matemática da Universidade do Porto,undefined
关键词
Reversing symmetry; Area-preserving map; Closing Lemma; Elliptic point; Primary 37D20; 37C20; Secondary 37C27; 34D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study R-reversible area-preserving maps f:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M\rightarrow M$$\end{document} on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that R∘f=f-1∘R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\circ f=f^{-1}\circ R$$\end{document} where R:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R:M\rightarrow M$$\end{document} is an isometric involution. We obtain a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Closing Lemma for reversible maps and other perturbation toolboxes.
引用
收藏
页码:309 / 326
页数:17
相关论文
共 50 条
  • [21] On the asymptotic geometry of area-preserving maps
    Polterovich, L
    Siburg, KF
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (2-3) : 233 - 243
  • [22] ORGANIZATION OF CHAOS IN AREA-PRESERVING MAPS
    DANA, I
    PHYSICAL REVIEW LETTERS, 1990, 64 (20) : 2339 - 2342
  • [23] AN ANALYTICAL STUDY OF EQUAL-PERIODIC BIFURCATIONS IN REVERSIBLE AREA-PRESERVING MAPS
    WANG, BH
    CHINESE PHYSICS-ENGLISH TR, 1989, 9 (01): : 85 - 95
  • [24] Controllability for a class of area-preserving twist maps
    Vaidya, U
    Mezic, I
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) : 234 - 246
  • [25] Creation of coherent structures in area-preserving maps
    Gupte, Neelima
    Sharma, Ashutosh
    PHYSICS LETTERS A, 2007, 365 (04) : 295 - 300
  • [26] NATURAL BOUNDARIES FOR AREA-PRESERVING TWIST MAPS
    BERRETTI, A
    CELLETTI, A
    CHIERCHIA, L
    FALCOLINI, C
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) : 1613 - 1630
  • [27] RIGIDITY FOR INFINITELY RENORMALIZABLE AREA-PRESERVING MAPS
    Gaidashev, D.
    Johnson, T.
    Martens, M.
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) : 129 - 159
  • [28] Secondary nontwist phenomena in area-preserving maps
    Vieira Abud, C.
    Caldas, I. L.
    CHAOS, 2012, 22 (03)
  • [29] Transport properties in nontwist area-preserving maps
    Szezech, J. D., Jr.
    Caldas, I. L.
    Lopes, S. R.
    Viana, R. L.
    Morrison, P. J.
    CHAOS, 2009, 19 (04)
  • [30] DIFFUSION IN MODELS OF MODULATED AREA-PRESERVING MAPS
    BAZZANI, A
    SIBONI, S
    TURCHETTI, G
    VAIENTI, S
    PHYSICAL REVIEW A, 1992, 46 (10): : 6754 - 6756