A Dichotomy in Area-Preserving Reversible Maps

被引:0
|
作者
Mário Bessa
Alexandre A. P. Rodrigues
机构
[1] Universidade da Beira Interior,Departamento de Matemática
[2] Centro de Matemática da Universidade do Porto,undefined
关键词
Reversing symmetry; Area-preserving map; Closing Lemma; Elliptic point; Primary 37D20; 37C20; Secondary 37C27; 34D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study R-reversible area-preserving maps f:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M\rightarrow M$$\end{document} on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that R∘f=f-1∘R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\circ f=f^{-1}\circ R$$\end{document} where R:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R:M\rightarrow M$$\end{document} is an isometric involution. We obtain a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Closing Lemma for reversible maps and other perturbation toolboxes.
引用
收藏
页码:309 / 326
页数:17
相关论文
共 50 条
  • [1] A Dichotomy in Area-Preserving Reversible Maps
    Bessa, Mario
    Rodrigues, Alexandre A. P.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (02) : 309 - 326
  • [2] FLUX-MINIMIZING CURVES FOR REVERSIBLE AREA-PRESERVING MAPS
    DEWAR, RL
    MEISS, JD
    PHYSICA D, 1992, 57 (3-4): : 476 - 506
  • [3] RESONANCES IN AREA-PRESERVING MAPS
    MACKAY, RS
    MEISS, JD
    PERCIVAL, IC
    PHYSICA D, 1987, 27 (1-2): : 1 - 20
  • [4] On certain area-preserving maps
    Brown, AB
    Halperin, M
    ANNALS OF MATHEMATICS, 1935, 36 : 833 - 837
  • [5] Area-preserving dynamics that is not reversible
    Lamb, JSW
    PHYSICA A, 1996, 228 (1-4): : 344 - 365
  • [6] On differentiable area-preserving maps of the plane
    Roland Rabanal
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 73 - 82
  • [7] RELAXATION IN PERTURBED AREA-PRESERVING MAPS
    BREYMANN, W
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1993, 48 (5-6): : 663 - 665
  • [8] TROPICAL DYNAMICS OF AREA-PRESERVING MAPS
    Filip, Simion
    JOURNAL OF MODERN DYNAMICS, 2019, 14 : 179 - 226
  • [9] Generic area-preserving reversible diffeomorphisms
    Bessa, Mario
    Carvalho, Maria
    Rodrigues, Alexandre
    NONLINEARITY, 2015, 28 (06) : 1695 - 1720
  • [10] Controlling chaos in area-preserving maps
    Chandre, C
    Vittot, M
    Elskens, Y
    Ciraolo, G
    Pettini, M
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (3-4) : 131 - 146