On the Problem of Electromagnetic-Field Quantization

被引:0
作者
Christian Krattenthaler
Sergey I. Kryuchkov
Alex Mahalov
Sergei K. Suslov
机构
[1] Universität Wien,Fakultät für Mathematik
[2] Arizona State University,School of Mathematical and Statistical Sciences
来源
International Journal of Theoretical Physics | 2013年 / 52卷
关键词
Generalized harmonic oscillators; Time-dependent Schrödinger equation; Heisenberg equations of motion; Dynamic invariants; Radiation field operators; Bogoliubov transformation; Quantization in randomly varying media; Berry’s phase; Uncertainty relation; Minimum-uncertainty squeezed states;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the radiation field operators in a cavity with varying dielectric medium in terms of solutions of Heisenberg’s equations of motion for the most general one-dimensional quadratic Hamiltonian. Explicit solutions of these equations are obtained and applications to the radiation field quantization, including randomly varying media, are briefly discussed.
引用
收藏
页码:4445 / 4460
页数:15
相关论文
共 150 条
[1]  
Bei X.-M.(2011)Quantum radiation in time-dependent dielectric media J. Phys. B, At. Mol. Opt. Phys. 44 45-57
[2]  
Liu Z.-Z.(1984)Quantal phase factors accompanying adiabatic changes Proc. R. Soc. Lond. A 392 S178-S180
[3]  
Berry M.V.(2004)Quantum cores of optical phase singularities J. Opt. A, Pure Appl. Opt. 6 1621-1626
[4]  
Berry M.V.(1987)Space-time description of squeezing J. Opt. Soc. Am. B 4 858-889
[5]  
Dennis M.R.(1925)Zur Quantenmechanik Z. Phys. 34 557-615
[6]  
Bialynicka-Birula Z.(1925)Zur Quantenmechanik II Z. Phys. 35 317-324
[7]  
Bialynicki-Birula I.(2004)Dissipative blackbody radiation: radiation in a lossy cavity Int. J. Mod. Phys. B 12 159-178
[8]  
Born M.(2010)Interpreting quantum states of electromagnetic field in time-dependent linear media Phys. Rev. A 82 1884-1912
[9]  
Jordan P.(2008)Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields Lett. Math. Phys. 84 015101-S58
[10]  
Born M.(2010)Quantum integrals of motion for variable quadratic Hamiltonians Ann. Phys. 325 S47-4429