Constructing and expressing Hermitian self-dual cyclic codes of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} over Fpm+uFpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$$\end{document}

被引:0
作者
Yuan Cao
Yonglin Cao
Fang-Wei Fu
Fanghui Ma
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Nankai University,Chern Institute of Mathematics and LPMC, and Tianjin Key Laboratory of Network and Data Security Technology
[3] Hubei University,Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
关键词
Hermitian self-dual code; Cyclic code; Binomial coefficient; Kronecker product of matrices; 94B15; 94B05; 11T71;
D O I
10.1007/s00200-022-00550-x
中图分类号
学科分类号
摘要
Let p be an odd prime and m and s positive integers, with m even. Let further Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^m}$$\end{document} be the finite field of pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^m$$\end{document} elements and R=Fpm+uFpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R={\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$$\end{document} (u2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=0$$\end{document}). Then R is a finite chain ring of p2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2m}$$\end{document} elements, and there is a Gray map from RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^N$$\end{document} onto Fpm2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^m}^{2N}$$\end{document} which preserves distance and orthogonality, for any positive integer N. It is an interesting approach to obtain self-dual codes of length 2N over Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^m}$$\end{document} by constructing self-dual codes of length N over R. In particular, it has been shown that one of the key problems in constructing self-dual repeated-root cyclic codes over R is to find an effective way to present precisely Hermitian self-dual cyclic codes of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} over R. But so far, only the number of these codes has been determined in literature. In this paper, we give an efficient way of constructing all distinct Hermitian self-dual cyclic codes of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} over R by using column vectors of Kronecker products of matrices with specific types. Furthermore, we provide an explicit expression to present precisely all these Hermitian self-dual cyclic codes, using binomial coefficients.
引用
收藏
页码:291 / 314
页数:23
相关论文
共 89 条
  • [1] Abualrub T(2009)Constacyclic codes over J. Franklin Inst. 346 520-529
  • [2] Siap I(1991)The determination of the group of automorphisms of a finite chain ring of characteristic The Quarterly Journal of Mathematics 42 387-391
  • [3] Alkhamees Y(2008)On Appl. Math. Lett. 21 1129-1133
  • [4] Amerra MCV(2004)-cyclic codes over Discrete Math. 275 43-65
  • [5] Nemenzo FR(1999)Type II codes over IEEE Trans. Inform. Theory 45 1250-1255
  • [6] Betsumiya K(2013)Cyclic codes and self-dual codes over Finite Fields Appl. 24 124-135
  • [7] Ling S(2018)On constacyclic codes over finite chain rings Adv. Math. Commun. 12 231-262
  • [8] Nemenzo FR(2018)Constacyclic codes of length Appl. Algebra in Engrg. Commun. Comput. 29 455-478
  • [9] Bonnecaze A(2019) over Discrete Math. 342 2077-2091
  • [10] Udaya P(2020)Matrix-product structure of constacyclic codes over finite chain rings Finite Fields Appl. 61 108-130