The uniqueness of the integrated density of states for the Schrödinger operators with magnetic fields

被引:0
|
作者
Shin-ichi Doi
Akira Iwatsuka
Takuya Mine
机构
[1] Institute of Mathematics,
[2] University of Tsukuba,undefined
[3] Tsukuba 305-8571,undefined
[4] Japan (e-mail: doi@math.tsukuba.ac.jp) ,undefined
[5] Kyoto Institute of Technology,undefined
[6] Sakyo-ku,undefined
[7] Kyoto 606-8585,undefined
[8] Japan (e-mail: iwatsuka@ipc.kit.ac.jp) ,undefined
[9] Department of Mathematics,undefined
[10] Faculty of Science,undefined
[11] Kyoto University,undefined
[12] Sakyo-ku,undefined
[13] Kyoto 606-8502,undefined
[14] Japan (e-mail: mine@kusm.kyoto-u.ac.jp) ,undefined
来源
Mathematische Zeitschrift | 2001年 / 237卷
关键词
Boundary Condition; Magnetic Field; Functional Analysis; Space Operator; Dirichlet Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
The integrated density of states (IDS) for the Schrödinger operators is defined in two ways: by using the counting function of eigenvalues of the operator restricted to bounded regions with appropriate boundary conditions or by using the spectral projection of the whole space operator. A sufficient condition for the coincidence of the two definitions above is given. Moreover, a sufficient condition for the coincidence of the IDS for the Dirichlet boundary conditions and the IDS for the Neumann boundary conditions is given. The proof is based only on the fundamental items in functional analysis, such as the min-max principle, etc.
引用
收藏
页码:335 / 371
页数:36
相关论文
共 50 条
  • [21] Tunneling Estimates for Magnetic Schrödinger Operators
    Shu Nakamura
    Communications in Mathematical Physics, 1999, 200 : 25 - 34
  • [22] Energy of Surface States for 3D Magnetic Schrödinger Operators
    Marwa Nasrallah
    The Journal of Geometric Analysis, 2016, 26 : 1453 - 1522
  • [23] Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions
    Michael Loss
    Bernd Thaller
    Communications in Mathematical Physics, 1997, 186 : 95 - 107
  • [24] Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields
    Poggi, Bruno
    ADVANCES IN MATHEMATICS, 2024, 445
  • [25] Singular Density of States Measure for Subshift and Quasi-Periodic Schrödinger Operators
    Artur Avila
    David Damanik
    Zhenghe Zhang
    Communications in Mathematical Physics, 2014, 330 : 469 - 498
  • [26] Strong Magnetic Field Asymptotics of Integrated Density of States for a Random 3D Schrödinger Operator
    W. Kirsch
    G.D. Raikov
    Annales Henri Poincaré, 2000, 1 : 801 - 821
  • [27] Deficiency Indices for Singular Magnetic Schrödinger Operators
    Correggi, Michele
    Fermi, Davide
    MILAN JOURNAL OF MATHEMATICS, 2024, 92 (01) : 25 - 39
  • [28] Magnetic-Sparseness and Schrödinger Operators on Graphs
    Michel Bonnefont
    Sylvain Golénia
    Matthias Keller
    Shiping Liu
    Florentin Münch
    Annales Henri Poincaré, 2020, 21 : 1489 - 1516
  • [29] Absence of positive eigenvalues of magnetic Schrödinger operators
    Silvana Avramska-Lukarska
    Dirk Hundertmark
    Hynek Kovařík
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [30] Commutators of Riesz transforms of magnetic Schrödinger operators
    Xuan Thinh Duong
    Lixin Yan
    manuscripta mathematica, 2008, 127