Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality

被引:0
作者
Ganghua Yuan
Masahiro Yamamoto
机构
[1] Northeast Normal University,School of Mathematics and Statistics
[2] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2010年 / 31卷
关键词
Schrödinger equation; Carleman estimate; Observability inequality; Inverse problem; Unique continuation; 93B05; 35R30; 35B60;
D O I
暂无
中图分类号
学科分类号
摘要
The authors prove Carleman estimates for the Schrödinger equation in Sobolev spaces of negative orders, and use these estimates to prove the uniqueness in the inverse problem of determining Lp-potentials. An L2-level observability inequality and unique continuation results for the Schrödinger equation are also obtained.
引用
收藏
页码:555 / 578
页数:23
相关论文
共 59 条
[31]  
Yamamoto M.(1996)Carleman estimates and unique continuation for solutions to boundary value problem J. Math. Pures Appl. 75 367-98
[32]  
Kazemi M. A.(1999)Uniqueness and stability in multidimensional hyperbolic inverse problems J. Math. Pures Appl. 78 65-undefined
[33]  
Klibanov M. V.(undefined)undefined undefined undefined undefined-undefined
[34]  
Kenig C. E.(undefined)undefined undefined undefined undefined-undefined
[35]  
Sogge C. D.(undefined)undefined undefined undefined undefined-undefined
[36]  
Khaĭdarov A.(undefined)undefined undefined undefined undefined-undefined
[37]  
Klibanov M. V.(undefined)undefined undefined undefined undefined-undefined
[38]  
Klibanov M. V.(undefined)undefined undefined undefined undefined-undefined
[39]  
Klibanov M. V.(undefined)undefined undefined undefined undefined-undefined
[40]  
Malinsky J.(undefined)undefined undefined undefined undefined-undefined