Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality

被引:0
作者
Ganghua Yuan
Masahiro Yamamoto
机构
[1] Northeast Normal University,School of Mathematics and Statistics
[2] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2010年 / 31卷
关键词
Schrödinger equation; Carleman estimate; Observability inequality; Inverse problem; Unique continuation; 93B05; 35R30; 35B60;
D O I
暂无
中图分类号
学科分类号
摘要
The authors prove Carleman estimates for the Schrödinger equation in Sobolev spaces of negative orders, and use these estimates to prove the uniqueness in the inverse problem of determining Lp-potentials. An L2-level observability inequality and unique continuation results for the Schrödinger equation are also obtained.
引用
收藏
页码:555 / 578
页数:23
相关论文
共 59 条
  • [1] Baudouin L.(2008)An inverse problem for Schrödinger equations with discontinuous main coefficient Appl. Anal. 87 1145-1165
  • [2] Mercado A.(2001)Uniqueness and stability in an inverse problem for the Schrödinger equation Inverse Problems 18 1537-1554
  • [3] Baudouin L.(2004)Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation Inverse Problems 20 1033-1052
  • [4] Puel J. P.(2006)Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation J. Math. Pures Appl. 85 193-224
  • [5] Bellassoued M.(1981)Global uniqueness of a class of multidimensional inverse problems Soviet Math. Dokl. 24 244-247
  • [6] Bellassoued M.(2003)Lipschitz stability in the lateral Cauchy problem for elasticity system J. Math. Kyoto Univ. 43 475-501
  • [7] Yamamoto M.(2006)Stabilization and control for the nonlinear Schrödinger equation on a compact surface Math. Z. 254 729-749
  • [8] Bukhgeim A. L.(2002)On Carleman estimates for hyperbolic equations Asymptotic Analysis 32 185-220
  • [9] Klibanov M. V.(2003)An inverse problem for the dynamical Lamé system with two sets of boundary data Comm. Pure Appl. Math. 56 1366-1382
  • [10] Cheng J.(1998)Lipschitz stability in inverse parabolic problems by the Carleman estimate Inverse Problems 14 1229-1245