On self-orthogonal group ring codes

被引:0
作者
Wenqing Fu
Tao Feng
机构
[1] Peking University,School of Mathematical Sciences
来源
Designs, Codes and Cryptography | 2009年 / 50卷
关键词
Cyclic code; Self-dual code; Quasi-cyclic code; Group ring code; Hermitian inner product; 11T71; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain structural results about group ring codes over F[G], where F is a finite field of characteristic p > 0 and the Sylow p-subgroup of the Abelian group G is cyclic. As a special case, we characterize cyclic codes over finite fields in the case the length of the code is divisible by the characteristic of the field. By the same approach we study cyclic codes of length m over the ring R = Fq[u], ur = 0 with r  > 0, gcd(m, q) = 1. Finally, we give a construction of quasi-cyclic codes over finite fields.
引用
收藏
页码:203 / 214
页数:11
相关论文
共 32 条
[1]  
Abualrub T.(2007)Cyclic codes over the rings Des. Codes Cryptogr. 42 273-287
[2]  
Siap I.(1967) +  Kibernetika 3 31-39
[3]  
Berman S.D.(1967) and Kibernetika 3 21-30
[4]  
Berman S.D.(1999) +  IEEE Trans. Inform. Theory 45 1250-1255
[5]  
Bonnecaze A.(1991) +  IEEE Trans. Inform. Theory 37 337-342
[6]  
Udaya P.(1992)On the theory of group codes IEEE Trans. Inform. Theory 38 1826-1829
[7]  
Castagnoli G.(1993)Semi-simple cyclic and Abelian codes AAECC 4 25-39
[8]  
Massey J.L.(1970)Cyclic codes and self-dual codes over Philips Res. Rep. 25 389-402
[9]  
Schoeller P.(1970) +  Discrete Appl. Math. 111 157-175
[10]  
von Seemann N.(2001)On repeated-root cyclic codes IEEE Trans. Inform. Theory 47 2751-2760