On Jacobi polynomials and fractional spectral functions on compact symmetric spaces

被引:0
作者
Richard Olu Awonusika
机构
[1] Adekunle Ajasin University,Department of Mathematical Sciences
来源
The Journal of Analysis | 2021年 / 29卷
关键词
Jacobi polynomials; Fractional Jacobi coefficients; Fractional Taylor expansion; Fractional Taylor heat coefficients; Fractional zeta functions; 33C05; 33C45; 35A08; 35C05; 35C10; 35C15;
D O I
暂无
中图分类号
学科分类号
摘要
The Jacobi coefficients cjℓ(α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{j}^{\ell }(\alpha ,\beta )$$\end{document} (1≤j≤ℓ;α,β>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le j\le \ell ; \alpha ,\beta >-1$$\end{document}) associated with the normalised Jacobi polynomials Pk(α,β)(η):=Pk(α,β)(η)/Pk(α,β)(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}_k^{(\alpha , \beta )}(\eta ):=P_{k}^{(\alpha ,\beta )}(\eta )/P_{k}^{(\alpha ,\beta )}(1)$$\end{document} (k≥0;α,β>-1,-1≤η≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 0; \alpha ,\beta >-1, -1\le \eta \le 1$$\end{document}) describe the Maclaurin heat coefficients appearing in the classical Maclaurin expansion of the heat kernel on any N-dimensional compact rank one symmetric space. These coefficients are computed by transforming the even (2ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2\ell )$$\end{document}th (ℓ≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell \ge 1)$$\end{document} derivatives of the Jacobi polynomials Pk(α,β)(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}_{k}^{(\alpha ,\beta )}(\eta )$$\end{document} into a spectral sum involving the Jacobi operator. In this paper, we generalise this idea by constructing the fractional Taylor heat coefficients (i.e., the coefficients appearing in the fractional Taylor series expansion of the heat kernel) on any rank one symmetric space of compact type. The Riemann–Liouville fractional derivative of normalised Jacobi polynomials Pk(α,β)(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}_k^{(\alpha , \beta )}(\eta )$$\end{document} is considered and an interesting spectral identity explicitly described by the fractional Jacobi coefficients is established. The analytical and spectral implications of these fractional coefficients are in turn underlined. The first fractional coefficients are explicitly computed. By extension, fractional Jacobi coefficients play a crucial role in the explicit descriptions of constants appearing in the fractional power series expansion of eigenfunctions involving Jacobi polynomials. We also introduce and construct new zeta functions Zm,ℓμ(α,β)=Zm,ℓμ(α,β)(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Z}}^{(\alpha ,\beta )}_{m,\ell \mu }={\mathcal {Z}}^{(\alpha ,\beta )}_{m,\ell \mu }(s)$$\end{document}(1≤ℓ≤m,0<μ≤1,s∈C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le \ell \le m, 0<\mu \le 1, s\in {\mathbb {C}})$$\end{document} associated with these fractional Taylor heat coefficients. It is interesting to see that this new zeta function can be explicitly described by the newly introduced fractional Minakshisundaram-Pleijel zeta function.
引用
收藏
页码:987 / 1024
页数:37
相关论文
共 111 条
[1]  
Atangana A(2013)A Note on fractional order derivatives and table of fractional derivatives of some special functions Abstract and Applied Analysis 2013 1-8
[2]  
Secer A(2016)On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation Applied Mathematics and Computation 273 948-956
[3]  
Atangana A(2018)Non validity of index law in fractional calculus: A fractional differential operator with Makovian and non-Markovian properties Physica A: Statistical Mechanics and its Applications 505 688-706
[4]  
Atangana A(2020)Fractional discretization: The African’s tortoise walk Chaos, Solitons and Fractals 130 109399-769
[5]  
Atangana A(2019)New numerical method for ordinary differential equations: Newton polynomial Journal of Computational and Applied Mathematics 372 112622-454
[6]  
Atangana A(2016)New fractional derivatives with non-local and nonsingular kernel: Theory and application to heat transfer model Thermal Science 20 763-155
[7]  
Araz SI(2018)Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena The European Physical Journal Plus 133 166-1137
[8]  
Atangana A(2016)Chaos in a simple nonlinear system with Atangana- Baleanu derivatives with fractional order Chaos, Solitons and Fractals 89 447-620
[9]  
Dumitru B(2018)Determinants of the Laplacians on complex projective spaces Journal of Number Theory 190 131-166
[10]  
Atangana A(2019) ( Proceedings-Mathematical Sciences 129 48-1367