Two-Dimensional Berezin-Li-Yau Inequalities with a Correction Term

被引:0
作者
Hynek Kovařík
Semjon Vugalter
Timo Weidl
机构
[1] Universität Stuttgart,Institute of Analysis, Dynamics and Modeling
来源
Communications in Mathematical Physics | 2009年 / 287卷
关键词
Correction Term; General Domain; Extended Domain; Spectral Asymptotics; Discrete Laplace Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is almost optimal. This improves a previous result by Melas, [11].
引用
收藏
页码:959 / 981
页数:22
相关论文
共 12 条
[1]  
Berezin F.A.(1972)Covariant and contravariant symbols of operators Izv. Akad. Nauk SSSR Ser. Mat. 36 1134-1167
[2]  
Freericks J.K.(2002)Segregation in the Falicov-Kimball model Commun. Math. Phys. 227 243-279
[3]  
Lieb E.H.(2003)Lower bound for the segregation in the Falicov-Kimball model J. Phys. A. 36 2227-2234
[4]  
Ueltschi D.(1994)Estimates for sums of eigenvalues of the Laplacian J. Funct. Anal. 126 217-227
[5]  
Goldbaum P.(1997)Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces J. Funct. Anal. 151 531-545
[6]  
Kröger P.(1983)On the Schrödinger equation and the eigenvalue problem, Comm Math. Phys. 88 309-318
[7]  
Laptev A.(2003)A lower bound for sums of eigenvalues of the Laplacian Proc. Amer. Math. Soc. 131 631-636
[8]  
Li P.(1961)On the eigenvalues of vibrating membranes Proc. London Math. Soc. 11 419-433
[9]  
Yau S.T.(1912)Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen Math. Ann. 71 441-479
[10]  
Melas A.D.(undefined)undefined undefined undefined undefined-undefined