DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning

被引:0
作者
Tulika Kakati
Dhruba K. Bhattacharyya
Jugal K. Kalita
Trina M. Norden-Krichmar
机构
[1] University of California,Department of Epidemiology and Biostatistics
[2] Irvine,Department of Computer Science
[3] Tezpur University,Department of Computer Science
[4] University of Colorado,undefined
[5] Colorado Springs,undefined
来源
BMC Bioinformatics | / 23卷
关键词
Differentially expressed genes; Convolutional neural network; Classification; Transfer learning; Disease biomarkers;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 183 条
  • [1] Dembélé D(2014)Fold change rank ordering statistics: a new method for detecting differentially expressed genes BMC Bioinform 15 14-140
  • [2] Kastner P(2010)Differential expression analysis for sequence count data Genome Biol 11 106-21
  • [3] Anders S(2014)Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol 15 550-1951
  • [4] Huber W(2010)EdgeR: a bioconductor package for differential expression analysis of digital gene expression data Bioinformatics 26 139-1132
  • [5] Love MI(2014)Voom: precision weights unlock linear model analysis tools for RNA-seq read counts Genome Biol 15 29-90629
  • [6] Huber W(2015)Gene expression data classification using support vector machine and mutual information-based gene selection Procedia Comput Sci 47 13-377
  • [7] Anders S(2007)Logistic regression for disease classification using microarray data: model selection in a large p and small n case Bioinformatics 23 1945-13
  • [8] Robinson MD(2006)Gene selection and classification of microarray data using random forest BMC Bioinform 7 3-900
  • [9] McCarthy DJ(2018)Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers? RNA 24 1119-7
  • [10] Smyth GK(2020)Deep learning for multi-tissue cancer classification of gene expressions (GeneXNet) IEEE Access 8 90615-2100