Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices

被引:0
|
作者
O. N. Kirillov
机构
[1] Technische Universität Darmstadt,Dynamics and Vibrations Group, Department of Mechanical Engineering
来源
Zeitschrift für angewandte Mathematik und Physik | 2010年 / 61卷
关键词
Primary 34B08; Secondary 34D10; Operator matrix; Non-self-adjoint boundary eigenvalue problem; Keldysh chain; Multiple eigenvalue; Diabolical point; Exceptional point; Perturbation; Bifurcation; Stability; Veering; Spectral mesh; Rotating continua;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two-point non-self-adjoint boundary eigenvalue problems for linear matrix differential operators. The coefficient matrices in the differential expressions and the matrix boundary conditions are assumed to depend analytically on the complex spectral parameter λ and on the vector of real physical parameters p. We study perturbations of semi-simple multiple eigenvalues as well as perturbations of non-derogatory eigenvalues under small variations of p. Explicit formulae describing the bifurcation of the eigenvalues are derived. Application to the problem of excitation of unstable modes in rotating continua such as spherically symmetric MHD α2-dynamo and circular string demonstrates the efficiency and applicability of the approach.
引用
收藏
页码:221 / 234
页数:13
相关论文
共 50 条