On Ulam Stability of an Operatorial Equation

被引:0
作者
Delia-Maria Kerekes
Dorian Popa
机构
[1] Technical University of Cluj-Napoca,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Ulam stability; bounded linear operators; difference equation; Volterra operator; Hilbert–Schmidt operator; Primary 39A30; Secondary 39B82; 47B39;
D O I
暂无
中图分类号
学科分类号
摘要
An iterative method generates a sequence associated with an equation, that, under appropriate conditions, converges to a solution of that equation. A perturbation of the equation produces also a perturbation of the sequence. In this paper, we study the Ulam stability (the behavior of the solutions of the perturbed equation with respect to the solutions of the exact equation) of an operatorial equation of the form xn+1=Tnxn+an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=T_nx_n+a_n$$\end{document}, where Tn:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n:X \rightarrow X$$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}$$\end{document}, are linear and bounded operators acting on a Banach space X. As applications we obtain some stability results for the case of Volterra, Fredholm and Gram–Schmidt operators. In this way, we improve and complement some results on this topic.
引用
收藏
相关论文
共 50 条
  • [41] A fixed point theorem and Ulam stability of a general linear functional equation in random normed spaces
    Benzarouala, Chaimaa
    Brzdek, Janusz
    Oubbi, Lahbib
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [42] Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces
    Tamilvanan, Kandhasamy
    Lee, Jung Rye
    Park, Choonkil
    AIMS MATHEMATICS, 2021, 6 (01): : 908 - 924
  • [43] ULAM-HYERS STABILITY OF FREDHOLM-VOLTERRA INTEGRAL EQUATION FROM ECONOMIC THEORY
    Lungu, Nicolae
    Ciplea, Sorina Anamaria
    PERFORMANCE MANAGEMENT OR MANAGEMENT PERFORMANCE?, 2018, : 32 - 36
  • [44] Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation
    Guerfi, Abderrahim
    Ardjouni, Abdelouaheb
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (01): : 83 - 94
  • [45] A fixed point theorem and Ulam stability of a general linear functional equation in random normed spaces
    Chaimaa Benzarouala
    Janusz Brzdęk
    Lahbib Oubbi
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [46] Applications of Banach Limit in Ulam Stability
    Badora, Roman
    Brzdek, Janusz
    Cieplinski, Krzysztof
    SYMMETRY-BASEL, 2021, 13 (05):
  • [47] Ulam stability for nonautonomous quantum equations
    Anderson, Douglas R.
    Onitsuka, Masakazu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [48] On the Ulam stability of fuzzy differential equations
    Jin, Zhenyu
    Wu, Jianrong
    AIMS MATHEMATICS, 2020, 5 (06): : 6006 - 6019
  • [49] Best Ulam constant for a linear difference equation
    Baias, Alina-Ramona
    Blaga, Florina
    Popa, Dorian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (01) : 13 - 22
  • [50] Ulam stability for nonautonomous quantum equations
    Douglas R. Anderson
    Masakazu Onitsuka
    Journal of Inequalities and Applications, 2021