On Ulam Stability of an Operatorial Equation

被引:0
作者
Delia-Maria Kerekes
Dorian Popa
机构
[1] Technical University of Cluj-Napoca,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Ulam stability; bounded linear operators; difference equation; Volterra operator; Hilbert–Schmidt operator; Primary 39A30; Secondary 39B82; 47B39;
D O I
暂无
中图分类号
学科分类号
摘要
An iterative method generates a sequence associated with an equation, that, under appropriate conditions, converges to a solution of that equation. A perturbation of the equation produces also a perturbation of the sequence. In this paper, we study the Ulam stability (the behavior of the solutions of the perturbed equation with respect to the solutions of the exact equation) of an operatorial equation of the form xn+1=Tnxn+an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=T_nx_n+a_n$$\end{document}, where Tn:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n:X \rightarrow X$$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}$$\end{document}, are linear and bounded operators acting on a Banach space X. As applications we obtain some stability results for the case of Volterra, Fredholm and Gram–Schmidt operators. In this way, we improve and complement some results on this topic.
引用
收藏
相关论文
共 50 条