On Ulam Stability of an Operatorial Equation

被引:0
作者
Delia-Maria Kerekes
Dorian Popa
机构
[1] Technical University of Cluj-Napoca,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Ulam stability; bounded linear operators; difference equation; Volterra operator; Hilbert–Schmidt operator; Primary 39A30; Secondary 39B82; 47B39;
D O I
暂无
中图分类号
学科分类号
摘要
An iterative method generates a sequence associated with an equation, that, under appropriate conditions, converges to a solution of that equation. A perturbation of the equation produces also a perturbation of the sequence. In this paper, we study the Ulam stability (the behavior of the solutions of the perturbed equation with respect to the solutions of the exact equation) of an operatorial equation of the form xn+1=Tnxn+an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=T_nx_n+a_n$$\end{document}, where Tn:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n:X \rightarrow X$$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}$$\end{document}, are linear and bounded operators acting on a Banach space X. As applications we obtain some stability results for the case of Volterra, Fredholm and Gram–Schmidt operators. In this way, we improve and complement some results on this topic.
引用
收藏
相关论文
共 50 条
  • [21] Ulam Stability of a General Linear Functional Equation in Modular Spaces
    Aboutaib, Issam
    Benzarouala, Chaimaa
    Brzdek, Janusz
    Lesniak, Zbigniew
    Oubbi, Lahbib
    SYMMETRY-BASEL, 2022, 14 (11):
  • [22] On Ulam Stability of the Inhomogeneous Version of the General Linear Functional Equation
    Benzarouala, Chaimaa
    Brzdek, Janusz
    El-hady, El-sayed
    Oubbi, Lahbib
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [23] On the Ulam stability of an n-dimensional quadratic functional equation
    Shen, Yonghong
    Chen, Wei
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 332 - 341
  • [24] Hyers-Ulam Stability of Hyperbolic Mobius Difference Equation
    Nam, Young Woo
    FILOMAT, 2018, 32 (13) : 4555 - 4575
  • [25] On the Ulam stability of a quadratic set-valued functional equation
    Wang, Faxing
    Shen, Yonghong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2014, 7 (05): : 359 - 367
  • [26] On Ulam Stability of a Generalized Delayed Differential Equation of Fractional Order
    Janusz Brzdęk
    Nasrin Eghbali
    Vida Kalvandi
    Results in Mathematics, 2022, 77
  • [27] Ulam Stability of a Linear Difference Equation in Locally Convex Spaces
    Novac, Adela
    Otrocol, Diana
    Popa, Dorian
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [28] On Ulam Stability of the Inhomogeneous Version of the General Linear Functional Equation
    Chaimaa Benzarouala
    Janusz Brzdęk
    El-sayed El-hady
    Lahbib Oubbi
    Results in Mathematics, 2023, 78
  • [30] On Ulam stability of a third order linear difference equation in Banach spaces
    Alina Ramona Baias
    Dorian Popa
    Aequationes mathematicae, 2020, 94 : 1151 - 1170