On Ulam Stability of an Operatorial Equation

被引:0
|
作者
Delia-Maria Kerekes
Dorian Popa
机构
[1] Technical University of Cluj-Napoca,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Ulam stability; bounded linear operators; difference equation; Volterra operator; Hilbert–Schmidt operator; Primary 39A30; Secondary 39B82; 47B39;
D O I
暂无
中图分类号
学科分类号
摘要
An iterative method generates a sequence associated with an equation, that, under appropriate conditions, converges to a solution of that equation. A perturbation of the equation produces also a perturbation of the sequence. In this paper, we study the Ulam stability (the behavior of the solutions of the perturbed equation with respect to the solutions of the exact equation) of an operatorial equation of the form xn+1=Tnxn+an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=T_nx_n+a_n$$\end{document}, where Tn:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n:X \rightarrow X$$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}$$\end{document}, are linear and bounded operators acting on a Banach space X. As applications we obtain some stability results for the case of Volterra, Fredholm and Gram–Schmidt operators. In this way, we improve and complement some results on this topic.
引用
收藏
相关论文
共 50 条
  • [1] On Ulam Stability of an Operatorial Equation
    Kerekes, Delia-Maria
    Popa, Dorian
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [2] REMARKS ON ULAM STABILITY OF THE OPERATORIAL EQUATIONS
    Rus, Ioan A.
    FIXED POINT THEORY, 2009, 10 (02): : 305 - 320
  • [3] Ulam stability of a successive approximation equation
    Baias, Alina Ramona
    Popa, Dorian
    Rasa, Ioan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (02)
  • [4] Ulam stability of a successive approximation equation
    Alina Ramona Baias
    Dorian Popa
    Ioan Raşa
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [5] On Ulam Stability of a Functional Equation
    Cieplinski, Krzysztof
    RESULTS IN MATHEMATICS, 2020, 75 (04)
  • [6] On Ulam Stability of a Functional Equation
    Krzysztof Ciepliński
    Results in Mathematics, 2020, 75
  • [7] On the Hyers-Ulam stability of a difference equation
    Jun, KW
    Kim, HM
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2005, 7 (04) : 397 - 407
  • [8] Approximate solutions of the logistic equation and Ulam stability
    Popa, Dorian
    Rasa, Ioan
    Viorel, Adrian
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 64 - 69
  • [9] The Ulam stability of Jensen-Quartic functional equation
    Song Aimin
    Zhang Zhenhua
    PROCEEDINGS OF THE 2016 6TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS, ENVIRONMENT, BIOTECHNOLOGY AND COMPUTER (MMEBC), 2016, 88 : 1127 - 1132
  • [10] Ulam Stability of a Functional Equation in Various Normed Spaces
    Cieplinski, Krzysztof
    SYMMETRY-BASEL, 2020, 12 (07):