An iterative method generates a sequence associated with an equation, that, under appropriate conditions, converges to a solution of that equation. A perturbation of the equation produces also a perturbation of the sequence. In this paper, we study the Ulam stability (the behavior of the solutions of the perturbed equation with respect to the solutions of the exact equation) of an operatorial equation of the form xn+1=Tnxn+an\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_{n+1}=T_nx_n+a_n$$\end{document}, where Tn:X→X\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_n:X \rightarrow X$$\end{document}, n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \in \mathbb {N}$$\end{document}, are linear and bounded operators acting on a Banach space X. As applications we obtain some stability results for the case of Volterra, Fredholm and Gram–Schmidt operators. In this way, we improve and complement some results on this topic.