A plasmonic terahertz perfect absorber based on L-shaped graphene patches and gold rods

被引:0
|
作者
Nastaran Korani
Mohammad Danaie
机构
[1] Semnan University,Faculty of Electrical and Computer Engineering
来源
Applied Physics A | 2023年 / 129卷
关键词
Absorber; Graphene; Plasmonic; Metamaterial; Sensor; Terahertz;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a novel plasmonic perfect absorber tailored for the terahertz frequency range, utilizing a single-mode configuration. The absorber architecture comprises a meticulously designed layered periodic array, combining SiO2, gold, and graphene components. The fundamental building block of this structure encompasses four strategically positioned L-shaped graphene patches and gold rods, placed on a SiO2 substrate. The absorption efficiency is further enhanced by incorporating an underlying gold layer functioning as a reflector. Employing the 3D finite difference time domain (FDTD) method, we rigorously investigate the absorption characteristics inherent to the proposed design. A comprehensive parametric study is conducted, varying the gold rod thickness and absorber geometry to optimize the absorption performance. Remarkably, our simulations reveal a conspicuous absorption peak exhibiting near-perfect absorbance, attaining 99.99%, precisely localized at 2.95 THz. Furthermore, the absorber's absorption frequency can be dynamically tailored by modifying the chemical potential of the graphene, a manipulation readily achieved through external bias voltage variation. The study provides illuminating insights into the electric and magnetic field distributions, elucidating the underlying absorption mechanisms. The results are later interpreted to discuss the effect of gold rods and graphene patches. The proposed graphene-based absorber seems to be a promising candidate for diverse applications encompassing sensors, modulators, detectors, and beyond.
引用
收藏
相关论文
共 50 条
  • [21] Dynamic tunable triple-band terahertz perfect absorber based on graphene metamaterial
    Cui, Zhen
    Zhu, Yonglin
    Zhang, Yize
    Zhang, Shuang
    Wang, Lu
    PHYSICA B-CONDENSED MATTER, 2025, 696
  • [22] Electrically Tunable Perfect Terahertz Absorber Based on a Graphene Salisbury Screen Hybrid Metasurface
    Chen, Xieyu
    Tian, Zhen
    Lu, Yongchang
    Xu, Yuehong
    Zhang, Xueqian
    Ouyang, Chunmei
    Gu, Jianqiang
    Han, Jiaguang
    Zhang, Weili
    ADVANCED OPTICAL MATERIALS, 2020, 8 (03):
  • [23] Broadband Terahertz Polarization Converter Based on L-Shaped Metamaterial
    Zhou Lu
    Zhao Guozhong
    Li Yonghua
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (04)
  • [24] Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene
    Cheng, Yongzhi
    Zhao, Haolin
    Li, Chan
    OPTICAL MATERIALS, 2020, 109
  • [25] Graphene-based highly efficient C-shaped metasurface for terahertz absorber
    Charola, Shreyas
    Ladumor, Mayurkumar
    Patel, Shobhitkumar
    Dhasarathan, Vigneswaran
    TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS XIII, 2020, 2020, 11279
  • [26] Study of L-shaped resonators at terahertz frequencies
    Liu, Jianfeng
    Zhou, Qingli
    Shi, Yulei
    Zhao, Xu
    Zhang, Cunlin
    APPLIED PHYSICS LETTERS, 2013, 103 (24)
  • [27] Multiband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the heterogeneous structure of graphene
    Norouzi-Razani, Amirhossein
    Rezaei, Pejman
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (07)
  • [28] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
    Zhao, Meng-Meng
    Fu, Shu-Fang
    Zhou, Sheng
    Song, Yu-Ling
    Zhang, Qiang
    Yin, Yong-Qi
    Zhao, Yu-Tian
    Liang, Hong
    Wang, Xuan-Zhang
    CHINESE PHYSICS B, 2020, 29 (05)
  • [29] Multiband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the heterogeneous structure of graphene
    Amirhossein Norouzi-Razani
    Pejman Rezaei
    Optical and Quantum Electronics, 2022, 54
  • [30] Tunable Graphene-based Plasmonic Perfect Metamaterial Absorber in the THz Region
    Yi, Zao
    Chen, Jiajia
    Cen, Chunlian
    Chen, Xifang
    Zhou, Zigang
    Tang, Yongjian
    Ye, Xin
    Xiao, Shuyuan
    Luo, Wei
    Wu, Pinghui
    MICROMACHINES, 2019, 10 (03):