QCD pomeron from AdS/CFT Quantum Spectral Curve

被引:0
作者
Mikhail Alfimov
Nikolay Gromov
Vladimir Kazakov
机构
[1] LPT,
[2] École Normale Superieure,undefined
[3] Institut de Physique Theorique,undefined
[4] P.N. Lebedev Physical Institute,undefined
[5] Moscow Institute of Physics and Technology,undefined
[6] Mathematics Department,undefined
[7] King’s College London,undefined
[8] The Strand,undefined
[9] St. Petersburg INP,undefined
[10] Université Paris-VI,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
Integrable Field Theories; AdS-CFT Correspondence; QCD;
D O I
暂无
中图分类号
学科分类号
摘要
Using the methods of the recently proposed Quantum Spectral Curve (QSC) originating from integrability of N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} Super-Yang-Mills theory we analytically continue the scaling dimensions of twist-2 operators and reproduce the so-called pomeron eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation. Furthermore, we recovered the Faddeev-Korchemsky Baxter equation for Lipatov’s spin chain and also found its general-ization for the next-to-leading order in the BFKL scaling. Our results provide a non-trivial test of QSC describing the exact spectrum in planar N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} SYM at infinitely many loops for a highly nontrivial non-BPS quantity and also opens a way for a systematic expansion in the BFKL regime.
引用
收藏
相关论文
共 101 条
[1]  
Gromov N(2014)Quantum spectral curve for planar Phys. Rev. Lett. 112 011602-undefined
[2]  
Kazakov V(2012) super-Yang-Mills theory Lett. Math. Phys. 99 3-undefined
[3]  
Leurent S(2014)Review of AdS/CFT integrability: an overview JHEP 07 156-undefined
[4]  
Volin D(2012)Quantum spectral curve at work: from small spin to strong coupling in JHEP 06 048-undefined
[5]  
Beisert N(2012) SYM JHEP 08 134-undefined
[6]  
Gromov N(2012)An exact formula for the radiation of a moving quark in JHEP 11 075-undefined
[7]  
Levkovich-Maslyuk F(2014) super Yang-Mills Phys. Rev. Lett. 113 021601-undefined
[8]  
Sizov G(2014)The quark anti-quark potential and the cusp anomalous dimension from a TBA equation Phys. Rev. Lett. 113 121601-undefined
[9]  
Valatka S(2014)Analytic solution of Bremsstrahlung TBA JHEP 10 013-undefined
[10]  
Correa D(1982)Quantum spectral curve of the Phys. Lett. B 116 291-undefined