The extension of the reduced Clifford algebra and its Brauer class

被引:0
作者
Rajesh S. Kulkarni
机构
[1] Michigan State University,Department of Mathematics, Wells Hall
来源
manuscripta mathematica | 2003年 / 112卷
关键词
Homogeneous Space; Clifford Algebra; Homomorphic Image; Binary Form; Coordinate Ring;
D O I
暂无
中图分类号
学科分类号
摘要
The shape Clifford algebraCf of a binary form f of degree d is the k-algebra k{x,y}/I, where I is the ideal generated by {(αx+βy)d−f(α,β)∥α,βk}. Cf has a natural homomorphic image Af, called the reduced Clifford algebra, which is a rank d2 Azumaya algebra over its center. The center is isomorphic to the coordinate ring of the complement of an explicit Θ -divisor in PicC/kd +g −1, where C is the curve (wd−f(u,v)) and g is the genus of C ([9]). We show that the Brauer class of Af can be extended to a class in the Brauer group of PicC/kd + g −1. We also show that if d is odd, then the algebra Af is split if and only if the principal homogeneous space PicC/k1 of the jacobian of C has a k-rational point.
引用
收藏
页码:297 / 311
页数:14
相关论文
共 8 条
[1]  
Childs undefined(1978)undefined Linear and Multilinear Algebra 5 267-undefined
[2]  
Haile undefined(1984)undefined Amer. J. Math. 106 1269-undefined
[3]  
Haile undefined(1992)undefined J. Algebra 146 514-undefined
[4]  
Hoobler undefined(1972)undefined Ann. Sci. École Norm. Sup. 5 45-undefined
[5]  
Kulkarni undefined(2003)undefined Trans. of the AMS 355 3181-undefined
[6]  
Lichtenbaum undefined(1969)undefined Inventiones Math. 7 120-undefined
[7]  
Revoy undefined(1977)undefined J. Algebra 46 268-undefined
[8]  
Bergh undefined(1987)undefined J. Algebra 109 172-undefined