Gaussian Concentration and Uniqueness of Equilibrium States in Lattice Systems

被引:0
作者
J.-R. Chazottes
J. Moles
F. Redig
E. Ugalde
机构
[1] Centre de Physique Théorique,Institute of Applied Mathematics
[2] CNRS,Instituto de Física
[3] Institut Polytechnique de Paris,undefined
[4] Delft University of Technology,undefined
[5] Universidad Autónoma de San Luis Potosí,undefined
来源
Journal of Statistical Physics | 2020年 / 181卷
关键词
Concentration inequalities; Relative entropy; Blowing-up property; Equilibrium states; Large deviations; Hamming distance;
D O I
暂无
中图分类号
学科分类号
摘要
We consider equilibrium states (that is, shift-invariant Gibbs measures) on the configuration space SZd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{{\mathbb {Z}}^d}$$\end{document} where d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document} and S is a finite set. We prove that if an equilibrium state for a shift-invariant uniformly summable potential satisfies a Gaussian concentration bound, then it is unique. Equivalently, if there exist several equilibrium states for a potential, none of them can satisfy such a bound.
引用
收藏
页码:2131 / 2149
页数:18
相关论文
共 25 条
[1]  
Borgs C(1984)Translation symmetry breaking in four dimensional lattice gauge theories Commun. Math. Phys. 96 251-284
[2]  
Chazottes J-R(2007)Concentration inequalities for random fields via coupling Probab. Theory Relat. Fields 137 201-225
[3]  
Collet P(2017)On concentration inequalities and their applications for Gibbs measures in lattice systems J. Stat. Phys. 169 504-546
[4]  
Külske C(1987)Completely analytical interactions: constructive description J. Stat. Phys. 46 983-1014
[5]  
Redig F(1994)Large deviations for Commun. Math. Phys. 164 433-454
[6]  
Chazottes J-R(2003) actions Commun. Math. Phys. 239 29-51
[7]  
Collet P(1994)Concentration inequalities for functions of Gibbs fields with applications to diffraction and random Gibbs measures Commun. Math. Phys. 165 33-47
[8]  
Redig F(1994)For 2-D lattice spin systems weak mixing implies strong mixing Isr. J. Math. 86 331-348
[9]  
Dobrushin RL(1992)The positive-divergence and blowing-up properties Commun. Math. Phys. 144 303-323
[10]  
Shlosman S(1992)The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition Commun. Math. Phys. 149 175-193