Classification of Novikov algebras

被引:1
作者
Dietrich Burde
Willem de Graaf
机构
[1] Universität Wien,Fakultät für Mathematik
[2] Università di Trento,Dipartimento di Matematica
来源
Applicable Algebra in Engineering, Communication and Computing | 2013年 / 24卷
关键词
Novikov algebras; Classification; Computational methods; Primary 17D25; 17-04;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a method for classifying the Novikov algebras with a given associated Lie algebra. Subsequently we give the classification of the Novikov algebras of dimension 3 over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}, as well as the classification of the 4-dimensional Novikov algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document} whose associated Lie algebra is nilpotent. In particular this includes a list of all 4-dimensional commutative associative algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条
  • [41] CLASSIFICATION OF THREE-DIMENSIONAL ISOPOTENT ALGEBRAS
    Cedilnik, Anton
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 33 : 226 - 246
  • [42] Classification of nilpotent evolution algebras and extensions of their derivations
    Mukhamedov, Farrukh
    Khakimov, Otabek
    Qaralleh, Izzat
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (10) : 4155 - 4169
  • [43] CLASSIFICATION OF AH ALGEBRAS WITH FINITELY MANY IDEALS
    Wang, Kun
    JOURNAL OF OPERATOR THEORY, 2022, 88 (01) : 119 - 140
  • [44] A classification theorem for direct limits of extensions of circle algebras by purely infinite C*-algebras
    Ruiz, Efren
    JOURNAL OF OPERATOR THEORY, 2007, 58 (02) : 311 - 349
  • [45] On the classification and description of quantum lens spaces as graph algebras
    Gotfredsen, Thomas
    Zegers, Sophie Emma
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (01): : 246 - 282
  • [46] On the classification of certain inductive limits of real circle algebras
    Dean, Andrew J.
    Kucerovsky, Dan
    Sarraf, Aydin
    NEW YORK JOURNAL OF MATHEMATICS, 2016, 22 : 1393 - 1438
  • [47] On the classification of certain real rank zero C*-algebras
    Qingnan An
    Zhichao Liu
    Yuanhang Zhang
    Science China Mathematics, 2022, 65 : 753 - 792
  • [48] The classification of some generalised Bunce-Deddens algebras
    Rout, James
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (09) : 3919 - 3945
  • [49] The Algebraic and Geometric Classification of Nilpotent Right Commutative Algebras
    Adashev, Jobir
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    Sattarov, Aloberdi
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [50] THE CLASSIFICATION OF REAL PURELY INFINITE SIMPLE C*-ALGEBRAS
    Boersema, Jeffrey L.
    Ruiz, Efren
    Stacey, P. J.
    DOCUMENTA MATHEMATICA, 2011, 16 : 619 - 655