Classification of Novikov algebras

被引:1
作者
Dietrich Burde
Willem de Graaf
机构
[1] Universität Wien,Fakultät für Mathematik
[2] Università di Trento,Dipartimento di Matematica
来源
Applicable Algebra in Engineering, Communication and Computing | 2013年 / 24卷
关键词
Novikov algebras; Classification; Computational methods; Primary 17D25; 17-04;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a method for classifying the Novikov algebras with a given associated Lie algebra. Subsequently we give the classification of the Novikov algebras of dimension 3 over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}, as well as the classification of the 4-dimensional Novikov algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document} whose associated Lie algebra is nilpotent. In particular this includes a list of all 4-dimensional commutative associative algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条
  • [31] Novikov algebras carrying an invariant Lorentzian symmetric bilinear form (vol 82, pg 132, 2014)
    Guediri, M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 99 : 263 - 266
  • [32] On finite dimensional simple Novikov superalgebras
    Liu, Dong
    Pei, Yufeng
    Xia, Li-meng
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 999 - 1004
  • [33] Classification of real approximate interval C*-algebras
    Dean, A. J.
    Moreno, L. Santiago
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 818 - 847
  • [34] Classification of irreversible and reversible Pimsner operator algebras
    Dor-On, Adam
    Eilers, Soren
    Geffen, Shirly
    COMPOSITIO MATHEMATICA, 2021, 156 (12) : 2510 - 2535
  • [35] A Complete Classification of Al Algebras with the Ideal Property
    Ji, Kui
    Jiang, Chunlan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (02): : 381 - 412
  • [36] STRONG CLASSIFICATION OF EXTENSIONS OF CLASSIFIABLE C*-ALGEBRAS
    Eilers, Soren
    Restorff, Gunnar
    Ruiz, Efren
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (03) : 567 - 608
  • [37] CLASSIFICATION OF AF-ALGEBRAS AND THEIR DIMENSION GROUPS
    HUANG ZHAOBO(Institute of Mathematics
    ChineseAnnalsofMathematics, 1994, (02) : 181 - 192
  • [38] Structure and classification of Hom-associative algebras
    Makhlouf, Abdenacer
    Zahari, Ahmed
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2020, 24 (01): : 79 - 102
  • [39] Classification of nilpotent associative algebras of small dimension
    De Graaf, Willem A.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (01) : 133 - 161
  • [40] CLASSIFICATION OF AF-ALGEBRAS AND THEIR DIMENSION GROUPS
    HUANG, ZB
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1994, 15 (02) : 181 - 192