Classification of Novikov algebras

被引:1
作者
Dietrich Burde
Willem de Graaf
机构
[1] Universität Wien,Fakultät für Mathematik
[2] Università di Trento,Dipartimento di Matematica
来源
Applicable Algebra in Engineering, Communication and Computing | 2013年 / 24卷
关键词
Novikov algebras; Classification; Computational methods; Primary 17D25; 17-04;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a method for classifying the Novikov algebras with a given associated Lie algebra. Subsequently we give the classification of the Novikov algebras of dimension 3 over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}, as well as the classification of the 4-dimensional Novikov algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document} whose associated Lie algebra is nilpotent. In particular this includes a list of all 4-dimensional commutative associative algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条
  • [21] Classification of solvable Lie algebras
    de Graaf, WA
    EXPERIMENTAL MATHEMATICS, 2005, 14 (01) : 15 - 25
  • [22] On classification problem of Loday algebras
    Rakhimov, I. S.
    TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA, 2016, 672 : 225 - 244
  • [23] A classification of BL-algebras
    Laskowski, MC
    Shashoua, YV
    FUZZY SETS AND SYSTEMS, 2002, 131 (03) : 271 - 282
  • [24] CLASSIFICATION OF EXTENSIONS OF AT-ALGEBRAS
    Wei, Changguo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (08) : 1187 - 1208
  • [25] On classification of n-Lie algebras
    Bai, Ruipu
    Song, Guojie
    Zhang, Yaozhong
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 581 - 606
  • [26] Classification of Some Solvable Leibniz Algebras
    Ismail Demir
    Kailash C. Misra
    Ernie Stitzinger
    Algebras and Representation Theory, 2016, 19 : 405 - 417
  • [27] Classification of extensions of classifiable C*-algebras
    Eilers, Soren
    Restorff, Gunnar
    Ruiz, Efren
    ADVANCES IN MATHEMATICS, 2009, 222 (06) : 2153 - 2172
  • [28] On classification of n-Lie algebras
    Ruipu Bai
    Guojie Song
    Yaozhong Zhang
    Frontiers of Mathematics in China, 2011, 6 : 581 - 606
  • [29] Classification of Some Solvable Leibniz Algebras
    Demir, Ismail
    Misra, Kailash C.
    Stitzinger, Ernie
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (02) : 405 - 417
  • [30] Homotopy classification of Leavitt path algebras
    Cortinas, Guillermo
    Montero, Diego
    ADVANCES IN MATHEMATICS, 2020, 362