Classification of Novikov algebras

被引:1
作者
Dietrich Burde
Willem de Graaf
机构
[1] Universität Wien,Fakultät für Mathematik
[2] Università di Trento,Dipartimento di Matematica
来源
Applicable Algebra in Engineering, Communication and Computing | 2013年 / 24卷
关键词
Novikov algebras; Classification; Computational methods; Primary 17D25; 17-04;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a method for classifying the Novikov algebras with a given associated Lie algebra. Subsequently we give the classification of the Novikov algebras of dimension 3 over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}, as well as the classification of the 4-dimensional Novikov algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document} whose associated Lie algebra is nilpotent. In particular this includes a list of all 4-dimensional commutative associative algebras over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条