Discriminative structured dictionary learning for image classification

被引:2
作者
Wang P. [1 ]
Lan J. [1 ]
Zang Y. [2 ]
Song Z. [1 ]
机构
[1] School of Sciences, Tianjin University, Tianjin
[2] Tianjin Tendbeyond Science and Technology Development Co., Ltd, Tianjin
关键词
dictionary learning; image classification; sparse coding; sparse representation;
D O I
10.1007/s12209-016-2624-z
中图分类号
学科分类号
摘要
In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary’s discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification. © 2016, Tianjin University and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:158 / 163
页数:5
相关论文
共 25 条
  • [1] Aharon M., Elad M., Bruckstein A., K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J], IEEE Transactions on Signal Processing, 54, 11, pp. 4311-4322, (2006)
  • [2] Elad M., Aharon M., Image denoising via sparse and redundant representations over learned dictionaries[J], IEEE Transactions on Image Processing, 15, 12, pp. 3736-3745, (2006)
  • [3] Wright J., Yang A.Y., Ganesh A., Et al., Robust face recognition via sparse representation[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 2, pp. 210-227, (2009)
  • [4] Wang J., Yang J., Yu K., Et al., Locality-constrained linear coding for image classification[C], IEEE Conference on Computer Vision and Pattern Recognition(CVPR), (2010)
  • [5] Wright J., Ma Y., Mairal J., Et al., Sparse representation for computer vision and pattern recognition[J], Proceedings of the IEEE, 98, 6, pp. 1031-1044, (2010)
  • [6] Engan K., Aase S.O., Hakon-Husoy J., Method of optimal directions for frame designs[C], Proceedings of the International Conference on Acoustics, Speech and Signal Processing, (1999)
  • [7] Marial J., Bach F., Ponce J., Et al., Online learning for matrix factorization and sparse coding[J], Journal of Machine Learning Research, 11, pp. 19-60, (2010)
  • [8] Lu C., Shi J., Jia J., Online robust dictionary learning[C], IEEE Conference on Computer Vision and Pattern Recognition(CVPR), (2013)
  • [9] Mairal J., Bach F., Ponce J., Et al., Discriminative learned dictionaries for local image analysis[C], IEEE Conference on Computer Vision and Pattern Recognition(CVPR), (2008)
  • [10] Mairal J., Bach F., Ponce J., Et al., Supervised dictionary learning[C], Advances in Neural Information Processing Systems(NIPS), (2008)