Embedding Schramm spaces into Chanturiya classes

被引:0
作者
Milad Moazami Goodarzi
机构
[1] Shiraz University,Department of Mathematics, Faculty of Sciences
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Fourier series; Uniform convergence; Fourier coefficients; Generalized bounded variation; Embedding; 42A20; 42A16; 46E35; 46E30; 26A45;
D O I
暂无
中图分类号
学科分类号
摘要
The main theorem of this paper establishes a necessary and sufficient condition for embedding Schramm spaces ΦBV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi BV$$\end{document} into Chanturiya classes V[ν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V[\nu ]$$\end{document}. This result is new even for the classical spaces in the theory of Fourier series, namely, for the Wiener and the Salem classes. Furthermore, it provides a characterization of the embedding of Waterman classes ΛBV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda BV$$\end{document} into V[ν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V[\nu ]$$\end{document}. As a by-product of the main result, we establish a convergence criterion for the Fourier series of functions of ΦBV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi BV$$\end{document}; this is an extension of a well-known result due to Salem. An estimate on the magnitude of the Fourier coefficients in the space ΦBV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi BV$$\end{document} is also given, and finally it is shown that some of these results can be extended to a more general setting.
引用
收藏
相关论文
共 34 条
[1]  
Avdispahić M(1985)On the classes Proc. Am. Math. Soc. 95 230-234
[2]  
Avdispahić M(1986) and Int. J. Math. Math. Sci. 9 223-244
[3]  
Chanturiya ZA(1974)Concepts of generalized bounded variation and the theory of Fourier series Sov. Math. Dokl. 15 67-71
[4]  
Chanturiya ZA(1976)The modulus of variation of a function and its application in the theory of Fourier series Math. USSR Sb. 29 475-495
[5]  
Chistyakov VV(2005)On uniform convergence of fourier series J. Math. Anal. Appl. 310 609-625
[6]  
Chlebus E(2009)The optimal form of selection principles for functions of a real variable Appl. Math. Lett. 22 732-737
[7]  
Goginava U(2005)An approximate formula for a partial sum of the divergent Ukr. Math. J. 57 1818-1824
[8]  
Goodarzi MM(2017)-series J. Math. Anal. Appl. 450 829-838
[9]  
Hormozi M(2019)On the embedding of Waterman class in the class Math. Inequal. Appl. 22 291-296
[10]  
Memić N(2013)Relations between Schramm spaces and generalized Wiener classes J. Math. Anal. Appl. 404 195-200