Fusion diversion network for fast, accurate and lightweight single image super-resolution

被引:0
|
作者
Zheng Gu
Liping Chen
Yanhong Zheng
Tong Wang
Tieying Li
机构
[1] Beijing Institute of Spacecraft System Engineering,
来源
Signal, Image and Video Processing | 2021年 / 15卷
关键词
Single image super-resolution (SISR); Convolutional neural network (CNN); Fusion diversion network; Lightweight;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, deep convolution neural network has been widely used in image super-resolution and achieved great performance. As the network becomes deeper and deeper, the accuracy of reconstruction is higher and higher. However, it also brings a large increase in the number of parameters and computational complexity, which makes the practical application more and more difficult. In this paper, we propose an efficient image super-resolution method based on fusion diversion network (FDN), where diversion and fusion block serves as the basic build module. By using the fusion and diversion mechanism, the information can be fully interactive and transferred in the network, and the expression ability of the model can be effectively improved. Extensive experimental results show that even with much fewer layers, the proposed FDN achieves the competitive results in both accuracy and speed.
引用
收藏
页码:1351 / 1359
页数:8
相关论文
共 50 条
  • [31] Lightweight Mars remote sensing image super-resolution reconstruction network
    Geng M.
    Wu F.
    Wang D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (12): : 1487 - 1498
  • [32] GRFN: A Group Residual Feature Network for Lightweight Image Super-Resolution
    Yang, Xin
    Hong, Chaming
    Zhang, Panpan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, : 3513 - 3533
  • [33] Lightweight single image super-resolution based on shallow feature modulation
    Cheng, De-Qiang
    Wang, Zi-Qiang
    Zhan, GHao-Xiang
    Kou, Qi-Qi
    Qian, Jian-Sheng
    Jiang, He
    Kongzhi yu Juece/Control and Decision, 2024, 39 (12): : 4045 - 4054
  • [34] Lightweight Single Image Super-Resolution by Channel Split Residual Convolution
    Liu, Buzhong
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (01): : 12 - 25
  • [35] Lightweight Single Image Super-Resolution With Multi-Scale Spatial Attention Networks
    Soh, Jae Woong
    Cho, Nam Ik
    IEEE ACCESS, 2020, 8 : 35383 - 35391
  • [36] CRUN: a super lightweight and efficient network for single-image super resolution
    Huang, Xingji
    Mao, Yuxing
    Li, Jian
    Wu, Shunxin
    Chen, Xueshuo
    Lu, Hang
    APPLIED INTELLIGENCE, 2023, 53 (24) : 29557 - 29569
  • [37] CRUN: a super lightweight and efficient network for single-image super resolution
    Xingji Huang
    Yuxing Mao
    Jian Li
    Shunxin Wu
    Xueshuo Chen
    Hang Lu
    Applied Intelligence, 2023, 53 : 29557 - 29569
  • [38] Dual residual and large receptive field network for lightweight image super-resolution
    Pan, Lulu
    Li, Guo
    Xu, Ke
    Lv, Yanheng
    Zhang, Wenbo
    Li, Lingxiao
    Lei, Le
    NEUROCOMPUTING, 2024, 600
  • [39] Multi-scale feature selection network for lightweight image super-resolution
    Li, Minghong
    Zhao, Yuqian
    Zhang, Fan
    Luo, Biao
    Yang, Chunhua
    Gui, Weihua
    Chang, Kan
    NEURAL NETWORKS, 2024, 169 : 352 - 364
  • [40] Lightweight image super-resolution reconstruction based on inverted residual attention network
    Lu, Pei
    Xie, Feng
    Liu, Xiaoyong
    Lu, Xi
    He, Jiawang
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (03)