Fusion diversion network for fast, accurate and lightweight single image super-resolution

被引:0
|
作者
Zheng Gu
Liping Chen
Yanhong Zheng
Tong Wang
Tieying Li
机构
[1] Beijing Institute of Spacecraft System Engineering,
来源
Signal, Image and Video Processing | 2021年 / 15卷
关键词
Single image super-resolution (SISR); Convolutional neural network (CNN); Fusion diversion network; Lightweight;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, deep convolution neural network has been widely used in image super-resolution and achieved great performance. As the network becomes deeper and deeper, the accuracy of reconstruction is higher and higher. However, it also brings a large increase in the number of parameters and computational complexity, which makes the practical application more and more difficult. In this paper, we propose an efficient image super-resolution method based on fusion diversion network (FDN), where diversion and fusion block serves as the basic build module. By using the fusion and diversion mechanism, the information can be fully interactive and transferred in the network, and the expression ability of the model can be effectively improved. Extensive experimental results show that even with much fewer layers, the proposed FDN achieves the competitive results in both accuracy and speed.
引用
收藏
页码:1351 / 1359
页数:8
相关论文
共 50 条
  • [1] Fusion diversion network for fast, accurate and lightweight single image super-resolution
    Gu, Zheng
    Chen, Liping
    Zheng, Yanhong
    Wang, Tong
    Li, Tieying
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1351 - 1359
  • [2] An efficient lightweight network for single image super-resolution*
    Tang, Yinggan
    Zhang, Xiang
    Zhang, Xuguang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [3] Disentangled feature fusion network for lightweight image super-resolution
    Liu, Huilin
    Zhou, Jianyu
    Su, Shuzhi
    Yang, Gaoming
    Zhang, Pengfei
    DIGITAL SIGNAL PROCESSING, 2024, 154
  • [4] Lightweight adaptive weighted network for single image super-resolution
    Li, Zheng
    Wang, Chaofeng
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 211
  • [5] A lightweight network with bidirectional constraints for single image super-resolution
    Chen, Liangliang
    Guo, Lin
    Cheng, Deqiang
    Kou, Qiqi
    Gao, Rui
    OPTIK, 2021, 239
  • [6] Lightweight Single Image Super-Resolution With Similar Feature Fusion Block
    Wang, Zirui
    Liu, Yunmeng
    Zhu, Rui
    Yang, Wenming
    Liao, Qingmin
    IEEE ACCESS, 2022, 10 : 30974 - 30981
  • [7] MADNet: A Fast and Lightweight Network for Single-Image Super Resolution
    Lan, Rushi
    Sun, Long
    Liu, Zhenbing
    Lu, Huimin
    Pang, Cheng
    Luo, Xiaonan
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1443 - 1453
  • [8] Lightweight Parallel Feedback Network for Image Super-Resolution
    Beibei Wang
    Changjun Liu
    Binyu Yan
    Xiaomin Yang
    Neural Processing Letters, 2023, 55 : 3225 - 3243
  • [9] A sparse lightweight attention network for image super-resolution
    Hongao Zhang
    Jinsheng Fang
    Siyu Hu
    Kun Zeng
    The Visual Computer, 2024, 40 (2) : 1261 - 1272
  • [10] Lightweight bidirectional feedback network for image super-resolution
    Wang, Beibei
    Yan, Binyu
    Liu, Changjun
    Hwangbo, Ryul
    Jeon, Gwanggil
    Yang, Xiaomin
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102